105

Search for Pentaquarks in the Hadronic Decays of the Z Boson with the DELPHI detector at LEP

Nelli Pukhaeva*

INFN Italy / JINR Russia for the DELPHI Collaboration E-mail: Nelli.Pukhaeva@cern.ch

The quark model does not exclude pentaquark systems. Recent controversial evidence for such states has been published, in particular for a strange pentaquark $\Theta^+(1540)$, for a double-strange state called $\Xi(1862)^{--}$ and for a charmed state $\Theta_c(3100)^0$. Such states should be produced in e^+e^- annihilations in Z decays. In this paper a search for pentaquarks using the DELPHI detector is described. Preliminary upper limits at 95% C.L. are set on the production rates per Z decay of such particles and their charge-conjugate state.

International Europhysics Conference on High Energy Physics July 21st - 27th 2005 Lisboa, Portugal

*Speaker.

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlikeLicence.

1. Introduction

The quark model does not exclude pentaquark bound states for four quarks and one antiquark, e.g. *uudds*. Several models predicts the multiplet structure and characteristics of pentaquarks, for example the choral soliton model, the uncorrelated, correlated quark models, the thermal model, lattice QCD, etc. [1].

Recent experimental evidence [2] may suggest the existence of pentaquark systems. The first possible candidate is the $\Theta^+(1540)$, with mass of $1.54 \pm 0.01 \text{ GeV}/c^2$, width smaller than $1 \text{ MeV}/c^2$, and strangeness S=+1, consistent with being made of the quarks (*uudds̄*). Subsequently, evidence for another exotic baryon doubly charged and with doubly strangeness, the $\Xi(1862)^{--}$, has been published by the CERN experiment NA49 [3]. More recently, the DESY experiment H1 has reported a signal for a charmed exotic baryon in the pD*- channel[4], the $\Theta_c(3100)^0$, with a mass of $3099 \pm 3(stat) \pm 5(syst) \text{ MeV}/c^2$ and measured width compatible with the resolution. It is interpreted as a constituent quark composition of $uudd\bar{c}$.

Pentaquark states might be produced in a significant way in e^+e^- annihilations in Z boson decays[5]. This paper reports on the results of a search for the $\Theta(1540)^+$, Θ^{++} , $\Xi(1862)^{--}$ and $\Theta_c(3100)^0$ pentaquark states in hadronic Z decays recorded by DELPHI at LEP.

2. Experimental Procedure

The analysis is based on a data sample of over 3 million hadronic Z decays collected from 1991 to 1995 with the DELPHI detector at LEP. The detector is described in detail in [6] and its performance is analyzed in [7].

A charged particle has been accepted in this analysis if, typically, its momentum p is greater than 300-400 MeV/c, its momentum error $\Delta p/p$ is less than 1 and its impact parameter with respect to the nominal crossing point is within 3-4 cm in the transverse (*xy*) plane and 3-4 cm/*sin* θ along the beam direction (*z*-axis), θ being the polar angle of the track.

Hadronic events are then selected by requiring basically, at least 4 charged particles, 3 GeV as minimum energy of the charged particles in each hemisphere of the event and total energy of the charged particles of at least 11% of the centre-of-mass energy.

Charged particle identification has been provided by the Ring Imaging Cherenkov detector (RICH) for particles with momenta above 700 MeV/c, while the ionization loss measured in the Time Projection Chamber (TPC) as been used for momenta above 100 Mev/c.

The K_s and Λ candidates are detected by their decay in flight into $\pi^+\pi^-$ and $p\pi^-$ respectively. The details of the reconstruction method and the various cuts applied are described in [8].

3. Search for Strange Pentaquarks in the pK^0 and the pK^+ Channels

The state Θ^+ can be detected through its decay info pK^0 pairs; the state Θ^{++} could be observed in its decay into pK^+ .

The study was restricted to the 1994 and 1995 data taking periods during which the TPC and RICH detectors were optimally set up and functioning especially for particle identification.

Figure 1: left: (πK^{-}) , middle: (πK^{0}) , right: (πK^{+}) invariant mass spectra. The curves are the results of the fi ts described in the text.

Analysis of the *pK* system: We first analyzed the $pK^{-}(\bar{p}K^{+})$ invariant mass distribution constructed using identified particles. Fig. 1(left) shows the pK^{-} invariant mass spectrum. A clear $\Lambda(1540)$ signal is observed at the expected mass, consistent with published results [9]. This invariant mass distribution was fitted to the sum of the a phase space-like term and normalized Gaussian function accounting for the $\Lambda(1540)$ production. The excess of events in the $\Lambda(1540)$ region is of 306 ± 55 events, with a fitted mass and width of 1.520 ± 0.002 GeV/ c^2 and 0.010 ± 0.004 GeV/ c^2 respectively. The χ^2 per degree of freedom is 1.4. This corresponds to an average $\Lambda(1540)$ production rate per hadronic events of 0.0224 ± 0.0027 , compatible with the value reported in [10].

The invariant mass distribution for pK^0 pairs in Fig. 1(middle). No Θ^+ signal is visible around 1.54 Gev/ c^2 . We performed the same fit as described above. The χ^2 per degree of freedom of the fit is of 1.3. the upper limit at 95% C.L. on the average production rate of the Θ^+ , derived from the fit and corrected for inefficiencies is $\langle N_{\Theta(1540)^+} \rangle < 0.005$.

The invariant mass spectrum for pK^+ pairs is shown in Fig. 1(right). No Θ^{++} peak is visible anywhere. The mass fit was repeated over the range of the Θ^{++} mass estimates, i.e. between 1.50 GeV/ c^2 and 1.75 GeV/ c^2 . The χ^2 per degree of freedom of the fit is of 1.7. The corresponding 95% C.L. upper limit on the average Θ^{++} production rate per hadronic Z boson decay, is $\langle N_{\Theta^{++}} \rangle <$ 0.006.

4. Search for Doubly Charged and Doubly Strange Pentaquarks

In this analysis, in addition to the hadronic selection already described. The Ξ^- hyperon was reconstructed through the decay $\Xi^- \to \Lambda \pi^-$. For this, Λ candidates were reconstructed using the standard DELPHI V⁰ search algorithm [7] and imposing the invariant mass $M(p\pi^-)$ to be between 1.10 GeV/ c^2 and 1.135 GeV/ c^2 . A multivertex fit was then performed on each Ξ^- candidate decaying into $\Lambda \pi^-$ [10]. The resulting spectrum of the $\Lambda \pi^-$ invariant mass is shown in Fig. 2(left).

Analysis of the $\Xi\pi$ system: Fig. 2(middle) shows the invariant mass distribution of reconstructed Ξ^- candidate in the mass range between 1.30 GeV/ c^2 combined with a π^+ . A clear $\Xi(1540)$ peak of about 820 ± 50 events is observed.

The mass spectrum of $\Xi^-\pi^-$ combinations is shown in Fig. 2(right). No significant excess is observed in the 1.86 GeV/ c^2 mass region. The histogram is the JETSET7.3 [11] prediction for the

Figure 2: left: $(\Lambda \pi^{-})$, middle: $(\Xi^{-}\pi^{+})$, right: $(\Xi^{-}\pi^{-})$ invariant mass spectra. The histogram on the right fi gure is the MC simulated sample of events.

 $\Xi^-\pi^-$ spectrum without pentaquark. We performed a fit of the $\Xi^-\pi^-$ spectrum to a polynomial background and a Gaussian a central value of 1.862 GeV/ c^2 and a width of 0.015 GeV/ c^2 equal in this mass region. The fitted number of events is equal to -50 ± 75 . The reconstruction efficiency, estimated from a Monte Carlo generated sample of $\Xi(1862)^{--}$ events decaying into $\Xi^-\pi^-$ is $(10.0 \pm 0.5)\%$. This leads to a 95% C.L. estimate of the upper limit of the production rate of a $\Xi(1862)^{--}$ object, of $\langle N_{\Xi}(1862)^{--} \rangle < 2.8 \times 10^{-4}$.

5. Search for Charmed Pentaquarks

This study was also restricted to the 1994 and 1995 data taking periods. After the standard hadronic event selection applied, events corresponding to the decay chain $D^{*+} \rightarrow D^0 \rightarrow K^- \pi^+$ were selected as a first step of the analysis.

Figure 3: left: $(M(D^{*+}) - M(D^0))$, middle: $(D^* + \bar{p})$, right: $(D^* + p)$ invariant mass spectra.

Additional cuts were performed to suppress the background: $x_E(D^0) > 0.15$, where x_E is the energy fraction with respect to the beam energy; the momentum of the bachelor pion had to be between 0.3 GeV/*c* and 2.5 GeV/*c*; the decay length of the D^0 had to be larger than 0 and smaller than 2.5 cm; the momentum of the bachelor pion had to be between 0.3 GeV/*c* and 2.5 GeV/*c*, and the angle between the D^0 candidate and the bachelor π momenta had to be smaller than 90° in the c.m. system; $cos\theta_K > -0.9$, where $cos\theta_K$ is the angle between the D^0 flight direction and the K direction in the D^0 rest frame; the K candidates should not have a positive identification as a pion.

The distribution of $\Delta M = M_{K\pi\pi} - M_{K\pi}$ with 1.79 GeV/ $c^2 < M_{K\pi} < 1.91$ GeV/ c^2 is shown in Fig. 3(left). One can see a very clear D^* peak over a quite small background.

Analysis of the D^*p system: Fig. 3(middle and right) shows the effective mass distributions of D^*p for total charge zero and for absolute total charge 2 respectively. No narrow resonance peak around 3.1 GeV/ c^2 shows up. A 95% C.L. estimate of the upper limit for the production rate, per Z hadronic decay, of a possible $\Theta_c(3100)^0$ state has been worked out, correcting for inefficiencies estimated from a Monte Carlo generated sample of $\Theta_c(3100)^0$ events decaying into D^*p . It is: $\langle N_{\theta_c(3100)^0} \rangle < 8.8 \times 10^4$.

6. Conclusions

A search for pentaquarks in hadronic Z decays was performed. At 95% C.L., preliminary upper limits were established on the average production rates $\langle N \rangle$ of such particles and their charge-conjugate state per Z decay:

$$\begin{split} \langle N_{\Theta^+} \rangle &< 0.005 \\ \langle N_{\Theta^{++}} \rangle &< 0.006 \\ \langle N_{\Xi(1862)^{--}} \rangle &< 2.8 \times 10^4 \\ \langle N_{\Theta_c(3100)^0} \rangle Br(\Theta_c(3100)^0 \rightarrow D^{*+}\bar{p}) < 8.8 \times 10^4 \end{split}$$

References

- D.Diakonov et al., Z.Phys.A359(1997)305; R.Jaffe and F.Wilczek, Phys.Rev.Lett.91(2003)232003;
 S.Capstick et al, Phys.Lett.B570(2003)185; Bin Wu and Bo-Qiang Ma, Phys.Rev.D69(2004)077501;
 J.Ellis et al., JHEP 0405(2004)002; R.D.Matheus et al., Phys.Lett.B578(2004)323;
 V.Guzey, Phys.Rev.C69(2004)065203.
- [2] T.Nakato et al.(LEPS Coll.), Phys.Rev.Lett. 91(2003)012002; V.V.Barmin et.al.(DIANA Coll.), Phys.Atom.Nuclei 66(2003)1715; S.Stepanyan et al.(CLAS Coll.), Phys.Rev.Lett.91(2003)252001; J.Barth et al.(SAPHIR Coll.), Phys.Lett.B572(2003)127; A.E.Asratyan et al., Phys.Atom.Nuclei 67(2004)682; Yad.Fyz.67(2004)704; R.A.Arndt, I.I.Strakovsky and R.L.Workman, Phys.Rev.C68(2003)042201; V.Kubarovsky et al.(CLAS Coll.), Phys.Rev.Lett.92(2004)032001; K.Hicks, "Exper.Search for Pentaquarks", hep-ex/0504027.
- [3] C.Alt et al.(NA49 Coll.), Phys.Rev.Lett.92(2004) 042003.
- [4] A. Aktas et al.(H1 Coll.), Phys.Lett.B588, (2004) 17.
- [5] S. Schael et al.(ALEPH Coll.), Phys.Lett.B599 (2004 1.
- [6] P.Aarnio et al.(DELPHI Coll.), Nucl.Instr. and Meth.A303(1991)233.
- [7] P.Abreu et al.(DELPHI Coll.), Nucl.Instr.and Meth. A378(1996)57.
- [8] P.Abreu et al.(DELPHI Coll.), Z.Phys.C65(1995)587.
- [9] P.Abreu et al.(DELPHI Coll.), Phys.Lett.B475(2000)429.
- [10] S.Eidelman et al., Phys.Lett.B592(2004)1.
- [11] T.Sjostrand, Comp. Phys. Comm. 82 (1994) 74.