

Charmonium at CLEO-c

David H Miller*

Purdue University, West Lafayette, USA E-mail:miller@physics.purdue.edu

The charmonium results presented in this paper are part of a continuing program using the CLEO-c detector to produce high precision results on both open charm decays and charmonium systems [1]. The results include:

Observation of the $h_c(^1P_1)$

Branching fractions for $\mathcal{B}(J/\psi \to e^+e^-)$ and $\mathcal{B}(J/\psi \to \mu^+\mu^-)$

Observation of $\psi(3770) \to \pi\pi J/\psi$ and Measurement of $\Gamma_{ee}[\psi(2S)]$

Branching Fractions for $\psi(2S)$ -to- J/ψ Transitions

First Observation of $\psi(3770) \rightarrow \gamma \chi_{c1} \rightarrow \gamma \gamma J/\psi$

Two Photon Width of χ_{c2}

Hadronic decays of the $\psi(2S)$

International Europhysics Conference on High Energy Physics July 21st - 27th 2005 Lisboa, Portugal

^{*}Speaker.

[†]I would like to thank my CLEO colleagues and the CESR staff

1. Charmonium results from the $\psi(2S)$ and the $\psi(3770)$ [2]

The focus of the current CLEO-c program is on high precision measurements of charm physics, both open charm and charmonium bound states, from data taken at the $\psi(3770)$, $\psi(2S)$ and above $D_s\bar{D}_s$ threshold [1]. In addition the previous detector, CLEO III, accumulated data at the $\psi(2S)$. The results presented in this paper come from 5.85 pb^{-1} taken at the $\psi(2S)$, 20.46 pb^{-1} of continuum taken 50 MeV below the $\psi(2S)$ and $281pb^{-1}$ at the $\psi(3770)$. This paper summarizes the results and detailed description of each analysis can be found in the references.

1.1 Observation of the $h_c(^1P_1)$ [3]

The $h_c(^1P_1)$ state of charmonium has been observed in the isospin-violating reaction

$$e^+e^- \to \psi(2S) \to \pi^0 h_c$$
, $h_c \to \gamma \eta_c$, $\pi^0 \to \gamma \gamma$. (1.1)

in which the η_c decays are measured exclusively or inclusively. In the exclusive analysis, η_c are reconstructed in seven channels: $K_S^0 K^\pm \pi^\mp$, $K_L^0 K^\pm \pi^\mp$, $K^+ K^- \pi^+ \pi^-$, $\pi^+ \pi^- \pi^+ \pi^-$, $K^+ K^- \pi^0$, $\pi^+ \pi^- \eta (\to \gamma \gamma)$, and $\pi^+ \pi^- \eta (\to \pi^+ \pi^- \pi^0)$. The sum of the branching fractions is $(9.7 \pm 2.7)\%$ [4]. These measurements allow a precise determination of the mass of h_c and the branching fraction product $\mathcal{B}_\psi \mathcal{B}_h$, where $\mathcal{B}_\psi \equiv \mathcal{B}(\psi(2S) \to \pi^0 h_c)$ and $\mathcal{B}_h \equiv \mathcal{B}(h_c \to \gamma \eta_c)$. The results are combined to obtain $M(h_c) = 3524.4 \pm 0.6 \pm 0.4$ MeV and $\mathcal{B}(\psi(2S) \to \pi^0 h_c) \times \mathcal{B}(h_c \to \gamma \eta_c) = (4.0 \pm 0.8 \pm 0.7) \times 10^{-4}$. and the hyperfine splitting is:

$$\Delta M_{hf}(\langle M(^3P_J)\rangle - M(^1P_1)) = +1.0 \pm 0.6 \pm 0.4 \text{ MeV}.$$

The combined result for $M(h_c)$ is consistent with the spin-weighted average of the χ_{cJ} states.

1.2 Branching fractions for $\mathcal{B}(J/\psi \to e^+e^-)$ and $\mathcal{B}(J/\psi \to \mu^+\mu^-)$ [5]

The measurements of $\mathcal{B}(J/\psi\to e^+e^-)$ and $\mathcal{B}(J/\psi\to \mu^+\mu^-)$ are performed using the decay $\psi(2S)\to\pi^+\pi^-J/\psi$. The experimental procedure is straightforward and consists of determining the ratios of the numbers of exclusive $J/\psi\to\ell^+\ell^-$ decays for $\ell=e$ and μ , $N_{e^+e^-}$ and $N_{\mu^+\mu^-}$, to the number of inclusive $J/\psi\to X$ decays, N_X , where X means all final states. We obtain $\mathcal{B}(J/\psi\to e^+e^-)=(5.945\pm0.067\pm0.042)\%$ and $\mathcal{B}(J/\psi\to\mu^+\mu^-)=(5.960\pm0.065\pm0.050)\%$, leading to an average of $\mathcal{B}(J/\psi\to\ell^+\ell^-)=(5.953\pm0.056\pm0.042)\%$ and a ratio of $\mathcal{B}(J/\psi\to e^+e^-)/\mathcal{B}(J/\psi\to\mu^+\mu^-)=(99.7\pm1.2\pm0.6)\%$, all consistent with, but more precise than, previous measurements.

1.3 Observation of $\psi(3770) \rightarrow \pi\pi J/\psi$ [6]

Using the decays $\psi(3770) \to XJ/\psi$, $X = \pi^+\pi^-$ (13 σ significance) and $\pi^0\pi^0$ (3.8 σ) the following branching fractions are obtained: $\mathcal{B}(\psi(3770) \to \pi^+\pi^-J/\psi) = (214 \pm 25 \pm 22) \times 10^{-5}$ and $\mathcal{B}(\psi(3770) \to \pi^0\pi^0J/\psi) = (97 \pm 35 \pm 20) \times 10^{-5}$. The radiative return process $e^+e^- \to \gamma\psi(2S)$ populates the same event sample and is used to measure $\Gamma_{ee}[\psi(2S)] = (2125 \pm 26 \pm 82)$ eV.

1.4 Branching Fractions for $\psi(2S)$ -to- J/ψ Transitions [9]

New measurements have been made of the inclusive and exclusive branching fractions for $\psi(2S)$, which are either the most precise measurements to date or the first direct measurements. These results are shown in Table 1.

Table 1: For each mode: The detection efficiency, ϵ , in percent; the numbers of events found in the $\psi(2S)$ and continuum samples, $N_{\psi(2S)}$ and $N_{\rm cont}$; the number of $\psi(2S)$ related background events, $N_{\rm bgd}$; the branching fraction in percent and its ratio to $\mathcal{B}_{XJ/\psi}$ and $\mathcal{B}_{\pi^+\pi^-J/\psi}$, also in percent.

Channel	ϵ	$N_{\psi(2S)}$	$N_{ m cont}$	$N_{ m bgd}$	\mathcal{B}	$\mathcal{B}/\mathcal{B}_{XJ/\psi}$	$\mathcal{B}/\mathcal{B}_{\pi^+\pi^-J/\psi}$
$\pi^+\pi^-J/\psi$	49.3	60344	221	113	$33.54 \pm 0.14 \pm 1.10$	$56.37 \pm 0.27 \pm 0.46$	
$\pi^0\pi^0J/\psi$	22.2	13399	67	115	$16.52 \pm 0.14 \pm 0.58$	$27.76 \pm 0.25 \pm 0.43$	$49.24 \pm 0.47 \pm 0.86$
$\eta J/\psi$	22.6	2793	17	116	$3.25 \pm 0.06 \pm 0.11$	$5.46 \pm 0.10 \pm 0.07$	$9.68 \pm 0.19 \pm 0.13$
$\eta(\to\gamma\gamma)J/\psi$	16.9	2065	14	103	$3.21 \pm 0.07 \pm 0.11$	$5.39 \pm 0.12 \pm 0.06$	$9.56 \pm 0.21 \pm 0.14$
$\eta(\to \pi^+\pi^-\pi^0)J/\psi$	5.8	728	3	13	$3.39 \pm 0.13 \pm 0.13$	$5.70 \pm 0.21 \pm 0.13$	$10.10 \pm 0.38 \pm 0.22$
$\pi^0 J/\psi$	13.9	88	3	20	$0.13 \pm 0.01 \pm 0.01$	$0.22 \pm 0.02 \pm 0.01$	$0.39 \pm 0.04 \pm 0.01$
$\gamma \chi_{c0} \to \gamma \gamma J/\psi$	23.4	172	20	17	$0.18 \pm 0.01 \pm 0.02$	$0.31 \pm 0.02 \pm 0.03$	$0.55 \pm 0.04 \pm 0.06$
$\gamma \chi_{c1} \to \gamma \gamma J/\psi$	30.6	3688	46	21	$3.44 \pm 0.06 \pm 0.13$	$5.77 \pm 0.10 \pm 0.12$	$10.24 \pm 0.17 \pm 0.23$
$\gamma \chi_{c2} \to \gamma \gamma J/\psi$	28.6	1915	56	62	$1.85 \pm 0.04 \pm 0.07$	$3.11 \pm 0.07 \pm 0.07$	$5.52 \pm 0.13 \pm 0.13$
XJ/ψ	65.3	151138	37916	123	$59.50 \pm 0.15 \pm 1.90$		

1.5 First Observation of $\psi(3770) \rightarrow \gamma \chi_{c1} \rightarrow \gamma \gamma J/\psi$ [10]

The non- $D\bar{D}$ decay $\psi(3770) \to \gamma \chi_{c1}$ is observed. The two-photon cascades to J/ψ and $J/\psi \to \ell^+\ell^-$ are analyzed and the results are: $\sigma(e^+e^- \to \psi(3770)) \times \mathcal{B}(\psi(3770) \to \gamma \chi_{c1}) = (20.4 \pm 3.7 \pm 2.4)$ pb and branching fraction $\mathcal{B}(\psi(3770) \to \gamma \chi_{c1}) = (3.2 \pm 0.6 \pm 0.4) \times 10^{-3}$. The 90% C.L. upper limits for the transition to χ_{c2} (χ_{c0}): $\sigma \times \mathcal{B} < 10.8$ pb (< 295 pb) and $\mathcal{B} < 1.7 \times 10^{-3}$ (< 46×10^{-3}).

1.6 Two Photon Width of χ_{c2} [11]

A new measurement has been made of the two-photon width of χ_{c2} using reaction

$$e^+e^- \to e^+e^-(\gamma\gamma)$$
, $\gamma\gamma \to \chi_{c2} \to \gamma J/\psi \to \gamma l^+l^-$. (1.2)

The results are $\Gamma_{\gamma\gamma}(\chi_{c2})\mathcal{B}(\chi_{c2}\to\gamma J/\psi)\mathcal{B}(J/\psi\to e^+e^-+\mu^+\mu^-)=13.2\pm1.4(\mathrm{stat})\pm1.1(\mathrm{syst})$ eV, and $\Gamma_{\gamma\gamma}(\chi_{c2})=559\pm57(\mathrm{stat})\pm48(\mathrm{syst})\pm36(\mathrm{br})$ eV. This result is in excellent agreement with the result of two-photon fusion measurement by Belle [7] and also the $\bar{p}p\to\chi_{c2}\to\gamma\gamma$ measurement [8], when they are both reevaluated using the recent CLEO result for the radiative decay $\chi_{c2}\to\gamma J/\psi$.

1.7 Hadronic decays of the $\psi(2S)$ [12]

The states J/ψ and $\psi(2S)$ are non-relativistic bound states of a charm and an anti-charm quark. In perturbative QCD the decays of these states are expected to be dominated by the annihilation of the constituent $c\bar{c}$ into three gluons or a virtual photon. The partial width for the decays into an exclusive hadronic state h is expected to be proportional to the square of the $c\bar{c}$ wave function overlap at zero quark separation, which is well determined from the leptonic width [4]. Since the strong coupling constant, α_s , is not very different at the J/ψ and $\psi(2S)$ masses, it is expected that for any state h the J/ψ and $\psi(2S)$ branching ratios are related by:

$$Q_h = \frac{\mathcal{B}(\psi(2S) \to h)}{\mathcal{B}(J/\psi \to h)} \approx \frac{\mathcal{B}(\psi(2S) \to \ell^+\ell^-)}{\mathcal{B}(J/\psi \to \ell^+\ell^-)} = (12.7 \pm 0.5)\%, \tag{1.3}$$

where \mathcal{B} denotes a branching fraction, and the leptonic branching fractions are taken from the Particle Data Group (PDG) [4]. This relation is sometimes called "the 12% rule". The results for a wide variety of mesonic and baronic decays with and without strange particles are shown in tables 2 and 3.

Table 2: For each final state h the following quantities are given: the decay mode, the number of events attributable to $\psi(2S)$ decay, N_S , the average efficiency, ϵ ; the absolute branching fraction with statistical (68% C.L.) and systematic errors; previous branching fraction measurements from the PDG [4], and the Q_h value. For $\eta 3\pi$, the two decays modes $\eta 3\pi(\eta \to \gamma \gamma)$ and $\eta 3\pi(\eta \to 3\pi)$ are combined on line $\eta 3\pi$.

mode	N_S	ε	$\mathcal{B}(\psi(2S) \to h)$	B (PDG)	Q_h
h			(units of 10^{-4})	(units of 10^{-4})	(%)
$2(\pi^{+}\pi^{-})$	308.0	0.4507	2.2±0.2±0.2	4.50±1.00	5.55±1.53
$ ho\pi^+\pi^-$	285.5	0.4679	$2.0\pm0.2\pm0.4$	$4.20{\pm}1.50$	-
$2(\pi^+\pi^-)\pi^0$	1702.6	0.2115	$26.1 \pm 0.7 \pm 3.0$	30.00 ± 8.00	7.76 ± 1.10
$\eta\pi^+\pi^-$	7.2	0.0416	< 1.6	-	-
$\omega\pi^{+}\pi^{-}$	391.0	0.1553	$8.2 \pm 0.5 \pm 0.7$	4.80 ± 0.90	11.35 ± 1.94
$\eta 3\pi (\eta \to \gamma \gamma)$	201.7	0.0639	10.3±0.8±1.4	-	-
$\eta 3\pi (\eta \to 3\pi)$	50.0	0.0199	$8.1\pm1.4\pm1.6$	-	-
$\eta 3\pi$			$9.5{\pm}0.7{\pm}1.5$	-	-
$\eta' 3\pi$	12.8	0.0092	$4.5\pm1.6\pm1.3$	-	-
$K^+K^-\pi^+\pi^-$	817.2	0.3742	$7.1 \pm 0.3 \pm 0.4$	16.00±4.00	9.85±3.23
$\rho K^+ K^-$	223.8	0.3361	$2.2{\pm}0.2{\pm}0.4$	-	-
$\phi\pi^+\pi^-$	47.6	0.1744	$0.9 {\pm} 0.2 {\pm} 0.1$	1.50 ± 0.28	11.07 ± 3.30
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	711.6	0.1818	$12.7 \pm 0.5 \pm 1.0$	-	10.59 ± 2.81
$\eta K^+ K^-$	4.3	0.0354	< 1.3	-	-
ωK^+K^-	76.8	0.1288	$1.9 \pm 0.3 \pm 0.3$	1.50 ± 0.40	10.19 ± 2.96
$2(K^{+}K^{-})$	59.2	0.3118	$0.6 {\pm} 0.1 {\pm} 0.1$	-	6.71 ± 2.74
$\phi K^+ K^-$	36.8	0.1511	$0.8 {\pm} 0.2 {\pm} 0.1$	0.60 ± 0.22	$5.14{\pm}1.53$
$2(K^+K^-)\pi^0$	44.7	0.1339	$1.1 \pm 0.2 \pm 0.2$	-	-
$p\bar{p}\pi^+\pi^-$	904.5	0.4943	5.9±0.2±0.4	$8.00{\pm}2.00$	9.90±1.16
ho p ar p	61.1	0.4119	$0.5 {\pm} 0.1 {\pm} 0.2$	-	-
$p\bar{p}\pi^+\pi^-\pi^0$	434.9	0.1921	$7.3\pm0.4\pm0.6$	-	18.70 ± 5.80
$\eta p ar p$	9.8	0.0399	$0.8 \pm 0.3 \pm 0.3$	-	3.80 ± 2.09
$\omega p ar p$	21.2	0.1129	$0.6 {\pm} 0.2 {\pm} 0.2$	$0.80 {\pm} 0.32$	4.69 ± 2.22
$p\bar{p}K^+K^-$	30.1	0.3671	$0.3 {\pm} 0.1 {\pm} 0.0$	-	-
$\phi par p$	4.3	0.1732	< 0.24	< 0.26	-
$\Lambda \bar{\Lambda} \pi^+ \pi^-$	73.4	0.0844	$2.8 \pm 0.4 \pm 0.5$	-	-
$\Lambda ar{p} K^+$	74.0	0.2472	$1.0 \pm 0.1 \pm 0.1$	-	10.92 ± 2.93
$\Lambda \bar{p} K^+ \pi^+ \pi^-$	45.8	0.0847	$1.8 \pm 0.3 \pm 0.3$	-	-

Table 3: Branching ratios of $\psi(2S)$ decaying to baryon-antibaryon pairs. The last column shows the background subtracted continuum cross-section.

Modes	$S_{\psi(2S)}$	$B_{\psi(2S)}$	$f_S \cdot B_c$	$B_{\mathbf{x}f}$
ϵ	$\mathcal{B}(10^{-4})$	Q(%)	$\sigma_{cont}(pb)$	
$p\overline{p}$	66.6%	$2.87 \pm 0.12 \pm 0.15$	13.6±1.1	$1.5\pm0.37\pm0.13$
$\Lambda \overline{\Lambda}$	20.1%	$3.28 \pm 0.23 \pm 0.25$	25.2 ± 3.5	<2.0 @90 CL
$\Sigma^{+}\overline{\Sigma^{+}}$	4.1%	$2.57 \pm 0.44 \pm 0.68$	-	-
$\Sigma^0 \overline{\Sigma^0}$	7.2%	$2.63\pm0.35\pm0.21$	20.7 ± 4.2	-
$\Xi^{-}\overline{\Xi^{-}}$	8.6%	$2.38 \pm 0.30 \pm 0.21$	13.2 ± 2.2	<3.5 @90 CL
$\Xi_0 \overline{\Xi_0}$	2.4%	$2.75\pm0.64\pm0.61$		<14 @90 CL
$\Xi^{*0}\overline{\Xi^{*0}}$	0.6%	$0.72^{+1.48}_{-0.62} \pm 0.10$	-	-
		(<3.2 @90 CL)		
$\Omega - \underline{\Omega -}$	1.9%	$0.70^{+0.55}_{-0.33} \pm 0.10$	-	-
		(<1.6 @90 CL)		

References

- [1] R. A. Briere et al., Cornell Report CLNS 01/1742 (2001)
- [2] These results were presented at the International Europhysics Conference on High Energy Physics, July 21st 27th, 2005, Lisboa, Portugal.
- [3] J.L.Rosner *et al.*, Phys. Rev. Lett.**95**:102003,2005 [arXiv: hep-ex/0505073 (2005)]
 P. Rubin *et al.*, Phys. Rev. **D 72**: 092004,2005 [arXiv:hep-ex/0508037]
- [4] Particle Data Group S. Eidelman et al., Phys. Lett. B 592, 1 (2004)
- [5] Z. Li *et al.*, Phys. Rev. **D71**:111103,2005[arXiv: hep-ex/0503027 (2005)]
- [6] N. E. Adam et al., Phys. Rev. Lett. 96 082004,2006[arXiv: hep-ex/0508023 (2005)]
- [7] K. Abe *et al.*, Phys. Lett. **B 540**, 33 (2002)
- [8] M. Ambrogiani et al., Phys. Rev. **D** 62, 052002 (2000)
- [9] N. E. Adam et al., Phys. Rev. Lett. 94:232002,2005 '[arXiv: hep-ex/0503028 (2005)]
- [10] T. E. Coan et al., (submitted to Phys. Rev. Lett.), (arXiv: hep-ex/0509030 (2005))
- [11] S. Dobbs *et al.*,(submitted to Phys. Rev. Lett.), (arXiv: hep-ex/0510033 (2005))
- [12] R. A. Briere *et al.*, Phys. Rev. Lett.**95**:062001,2005[arXiv: hep-ex/050101 (2005)], T. K. Pedlar *et al.*, Phys. Rev. **D 72** 051108,2005 [arXiv: hep-ex/0505057 (2005)]