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1. Introduction

Events with a neutron carrying a large fraction of the proton energy have been observed in
ep scattering at HERA [1]. The dynamical mechanisms for their production are not completely
understood. They may be the result of hadronization of the proton remnant, conserving baryon
number in the final state. Exchange of virtual isovector mesons is also expected to contribute,
predominantly the exchange of low mass π+ mesons [2]. In this picture the proton fluctuates into
a virtual n-π+ state. The virtual π+ scatters with the projectile lepton, leaving the fast forward
neutron in the final state. Depending on the virtuality of the exchanged photon, which is a measure
of how pointlike the photon is, the neutron may also rescatter with it and escape detection, leading
to a depletion of neutrons in some kinematic regions [3].

Both the H1 and ZEUS experiments at HERA have forward neutron calorimeters (FNC) in
the proton beam direction. They measure the fraction of the beam energy carried by the neutron,
xL, and the transverse momentum transferred to the neutron, pT . Here we report results on leading
neutron production, in both photoproduction, where the photon virtuality Q2 is nearly zero, and in
deep inelastic scattering (DIS), where Q2 is greater than a few GeV2. Further studies are performed
by requiring that the hadronic final state contain two jets with large transverse energy. Comparisons
are made to Monte Carlo models, some of which incorporate the pion exchange mechanism.

2. Results

Figure 1 shows the energy spectra measured in the FNC for photoproduction and DIS with the
dijet requirement. Also shown are the predictions of several Monte Carlo models. RAPGAP-π ,
which incorporates pion exchange, gives a good description of both data sets. The standard photo-
production generator PYTHIA also describes reasonably the photoproduction data; when multiple
interactions are included (PYTHIA-MI) it predicts too high a rate at lower neutron energies. The
standard DIS generators RAPGAP and LEPTO, the latter both with and without soft color interac-
tions, predict too low a rate of neutrons.
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Figure 1: Energy distributions observed in the FNC for photoproduction and DIS events with the dijet
requirement, compared to Monte Carlo models normalized to the integrated luminosity of the data samples.

The ratios of dijet events in photoproduction with and without the requirement of a leading
neutron, fLN , are shown in Fig. 2. If the hard interaction is independent of the neutron production,
as in the pion exchange picture, fLN should be essentially independent of the jet kinematics which
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Figure 2: a) Fraction of dijet events with a leading neutron versus jet transverse energy. b) Fraction of dijet
events with a leading neutron versus xγ , the fraction of photon momentum participating in hard scattering.

reflect the hard process. Figure 2a shows that fLN is, within errors, independent of the jet transverse
energy ET . However Fig. 2b shows some dependence on xγ , the fraction of photon momentum
participating in the hard scattering. These dependencies can only partly be reproduced by the
PYTHIA model, which provides some estimate of possible phase space effects. A better description
is given by the pion exchange model RAPGAP-π for the leading neutron data and PYTHIA-MI for
the inclusive dijet data.

The p2
T distributions of neutrons in DIS are shown in Fig. 3a. They are well described by

exponentials exp(−bp2
T ). The slopes b are shown as a function of xL in Fig. 4a. They rise linearly

in the range xL =0.4-0.85, and drop slightly at higher xL. Also shown are the predictions of several
pion exchange models. None give a good description of the data.

The p2
T distributions of neutrons in photoproduction and DIS are shown in Fig. 3b, normalized

to unity at p2
T = 0. The distributions for photoproduction are steeper in the range xL =0.6-0.9. This

is summarized in Fig. 4b, where the difference ∆b = b(γ p)− b(DIS) is plotted. In rescattering
models small n-π separations, corresponding to large pT , undergo more rescattering. The depletion
of neutrons at high p2

T in photoproduction is qualitatively consistent with this picture.

3. Conclusions

Leading neutron production was studies in DIS and photoproduction, also with the requirement
of dijets in the final state. The neutron energy spectra were compared to Monte Carlo models, and
the best agreement was found with models incorporating pion exchange. However, the neutron
pT spectra in DIS differ from the pion exchange models. Effects qualitatively consistent with
rescattering models were observed in photoproduction.
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Figure 3: a) Leading neutron p2
T distributions for the DIS sample. The curves are fits to the form exp(−bp2

T ).
b) Leading neutron p2

T distributions for the DIS and photoproduction samples, normalized to unity at p2
T =0.
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Figure 4: a) The slopes b from Fig. 3a. b) The differences of the slopes b in Fig. 3b.
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