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A new crossing symmetric unitarization scheme conveniently applied to meson-meson and
meson-baryon scattering amplitudes is shortly proposed which can be not only used by theo-
reticians to unitarize arbitrary theoretical reaction amplitudes resulting from phenomenological
Lagrangeans for mesons and baryons, yet also by experimentalists to generate realistic unitary
fitting formulae for meson-meson and meson-baryon scattering observables sharing on one hand
all the features of the underlying theoretical amplitudes, on the other hand allowing direct com-
parison to these amplitudes. The new unitarization scheme has been inspired by the Dalitz and
Tuan (DT) representation [1], the basic ansatz of which is that “... the phases caused by different

sources add ...” (using the words of B.S. Zou, D.V. Bugg, Phys. Rev. D 50 (1994) 591 [2]).
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1. Unitarization and a new unitarization scheme inspired by Dalitz and Tuan

A quantitative description of particle scattering/production processes involving strong interac-
tions requires the complete non-perturbative scattering/production amplitude even close to thresh-
old. We shall call the procedure of estimating the non-perturbative part of a scattering/production
amplitude on the basis of a known perturbative or “tree-level” amplitude unitarization [3]. A com-
prehensive list of existing unitarization methods has been provided and discussed in Ref. [4]: the
Padé method [5, 6], the Inverse Amplitude Method [4, 7, 8, 6], the N/D method, and K-matrix
unitarization method [2, 4, 9]. Below we propose a to our best knowledge new crossing-symmetric
unitarization method avoids drawbacks1 of above mentioned unitarization schemes and is inspired
by the observation of Dalitz and Tuan (DT) [1] that — using the words of B.S. Zou and D.V. Bugg
[2] — “... the phases caused by different sources add ...". 2 Hence, we assume the S-matrix S
to be factorizable as a product of several partial S-matrices S1, . . ., Sn (n ∈ IN), i.e. S = S1S2 . . .Sn

(n ∈ IN). For simplicity we could assume unitarity of the partial S-matrices yielding the rela-
tion S j = 1 + 2 i T̄j ( j = 1, . . . ,n) between partial S-matrices and corresponding partial T-matrices
T̄1, . . ., T̄n. Then the T-matrix could be expanded into partial T-matrices T̄1, . . ., T̄n as follows:
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2 i
=

1
2 i

(
n

∏
j=1

S j − 1
)

=
n

∑
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+
1
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(
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−
n
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︸ ︷︷ ︸
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. (1.1)

An instructive case occurs when all n partial T-matrices are equal to one partial T-matrix T̄ ≡
T̄1 = T̄2 = . . . = T̄n corresponding to an unitary partial S-matrix 1 + 2 i T̄ . Then we have S =

(1+2 i T̄ )n and T =(S−1)/(2 i)= ((1+2 i T̄ )n−1)/(2 i)= n T̄+ “unitarization correction”. Hence
the n-th power of a partial S-matrix 1 + 2 i T̄ yields a “tree-level” T-matrix n T̄ being n times the
corresponding partial T-matrix T̄ . 3 Let’s proceed to the case, in which we don’t know, whether a

1Serious drawbacks of commonly used unitarization methods are lack of crossing symmetry (e.g. [10]), truncation
dependences [8], problems with inclusion of chiral zeros [8], and difficulties to relate analytic expressions resulting from
such methods directly to results obtained by quantum-field theoretic calculations of scattering amplitudes on the basis of
Lagrangeans. Roy-equations [11] admit fortunately crossing symmetry by imposing external conditions, unfortunately
they make strong assumptions about analyticity and have to be truncated in order to allow a numerical solution.

2Starting point for our consideration has been in analogy to DT the observation that the S-matrix for scalar isoscalar
ππ → ππ-scattering at energies below the KK̄-threshold and slightly above the ππ-threshold is fitted on the basis of
experimental pole positions Mσ(600) = (0.525− i0.265) GeV and M f0(980) = (0.999− i0.017) GeV to an astonishing
good approximation by a product of partial (Breit-Wigner) S-matrices Sσ(600)(s) = (s−M∗2

σ(600))/(s−M2
σ(600)) and

S f0(980)(s) = (s−M∗2
f0(980))/(s−M2

f0(980)) and a background phase S∗σ(600)(sthr)S∗f0(980)(sthr) = exp(2i(−67.5◦)) being
suitably chosen to make the cross section vanish exactly at the ππ-threshold sthr = 4m2

π± (with mπ± = 0.13957018 GeV).
The fit S(s) = exp(2i(−67.5◦)) Sσ(600)(s)S f0(980)(s) — lacking by construction desirable square-root behaviour at s =

sthr — is compared to experimental phaseshift data in Figs. 1, 2 and 3. Sσ(600)(s) and S f0(980)(s) represent manifestly s-
channel ππ-scattering, while the background phase−67.5◦ carries the reminder of t- and u-channel scattering processes.

3It is straight forward to analytically continue this result to arbitrary rational values of n. For n ∈ IR\IN0 we obtain:

T =
(1+2 i T̄ )n−1

2 i
= n T̄ (“tree-level”)+

1
2 i

∞

∑
j=2

n(n−1) · · · (n− j +1)

j! (2 i T̄ ) j (“unitarization corr.”). (1.2)

A simple non-trivial example for a non-natural value of n is n = −1, displaying a strong similarity to K-matrix unita-
rization, as S = (1+2 i T̄ )−1 and therefore T = (S−1)/(2i) =−T̄/(1+2 i T̄ ).
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partial T-matrix T̄j ( j ∈ IN) corresponds to an unitary partial S-matrix S j ( j ∈ IN) or not. Inspired
by DT we would at least expect that the phase of T̄j determines the phase of S j according to S j =

(T̄j/T̄ ∗j )α j ≡ (1 + 2i Im[T̄j] T̄
∗−1
j )α j , while α j is determined such that the “tree-level” contribution

to the T-matrix is given by T̄j itself. To find α j we expand (S j−1)/(2 i) in terms of T̄j:
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︸ ︷︷ ︸

“unitarization correction”

. (1.3)

Simple inspection yields α j Im[T̄j]/T̄ ∗j = T̄j ⇒ α j = |T̄j|2/Im[T̄j]. 4 Hence we conclude: If the
“tree-level” T-matrix is given by a sum T̄1 + . . .+ T̄n (n ∈ IN) of arbitrary partial T-matrices T̄1, . . .,
T̄n, then a DT-unitarized S-matrix S with a “tree-level” term T̄1 + . . .+ T̄n can be denoted as:

S = S1 S2 . . . Sn =
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. (1.4)

2. Instructive examples

DT-unitarized s-channel Breit-Wigner resonance. Consider a partial T-matrix for one s-
channel Breit-Wigner resonance with constant complex mass M dressed by a real coupling constant
g ∈ IR. I.e. we make the ansatz T̄1 = g Im[M2]/(s−M2) yielding Im[T̄1] = g Im2[M2]/|s−M2|2
and |T̄1|2 = g2 Im2[M2]/|s−M2|2. Then the unitarized S-matrix inspired by DT will be given by
S =

(
s−M∗2

s−M2

)g
= exp

[

i g arg
(

s−M∗2

s−M2

)]

. The resulting DT-unitarized T-matrix is given by:

T =
S−1

2 i
= g

Im[M2]

(s−M2)
︸ ︷︷ ︸

“tree-level”

+
1
2 i

∞

∑̀
=2

g (g−1) (g−2) · · · (g− `+1)

`!

(

2 i
Im[M2 ]

(s−M2)

)`

︸ ︷︷ ︸
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. (2.1)

In agreement with our previous discussion the unitarized T-matrix T reduces to the “tree-level”
T-matrix T1 for g ∈ IN0. T seems to possess the same poles and zeros as T1.

DT-unitarized one-channel two-resonance LσM approach to ππ-scattering. The “tree-
level” U(3)×U(3) Linear Sigma Model (LσM) scattering amplitude for ππ→ ππ scattering with
σ(600) and f0(980) intermediate states is given by ( fπ ' 92.42 MeV): 5

T̄π0π0←π+π−(s, t,u) =
√
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π
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π

(
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(
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σ

+
sin2 φs

s−M2
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))
√
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=
√
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(“unit. corr.”).
5φs ∈ IR is a nonstrange-strange scalar mixing angle defined by |σ〉= cosφs |nn̄〉−sinφs |ss̄〉 and | f0〉= sinφs |nn̄〉+

cosφs |ss̄〉, while ρππ (s) = |~p ππ
cm |/(8π

√
s) =

√

(1−4m2
π s−1)/(16π)' θ(s−4m2

π )/(16π) is the ππ-phasespace.
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Figure 1: Fit of δ 0
0 (
√

s): contri-
bution of “background” (−67.5◦)
and σ(600) and f0(980).
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Figure 2: Fit of δ 0
0 (
√

s): contri-
bution of “background” (−67.5◦)
and σ(600).
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Figure 3: Fit of δ 0
0 (
√

s): contribu-
tion of f0(980).

The DT-unitarized crossing symmetric S-matrix is now obviously (PI=0,1,2 are isospin projectors)

Sππ←ππ(s, t,u) = exp
[

i
√

ρππ(s)×

×
(

3PI=0 (∆(s)+∆(t)+∆(u))+PI=1 (∆(t)−∆(u))+PI=2 (∆(t)+∆(u))
)√

ρππ(s)
]

(2.2)

with ∆(s)≡− (s−m2
π )2

f 2
π Im[M2

σ ]
cos2 φs arg

(
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σ
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σ

)

− (s−m2
π )2

f 2
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]
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(
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)

.
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