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The measurement of exclusive ρρ production in two-photon interactions at LEP, γγ ∗ → ρρ , was

studied at two-photon center-of-mass energies of 1.1 GeV ≤ Wγγ ≤ 3 GeV and photon virtualities

of Q2 < 0.02 GeV2 and 0.2 ≤ Q2 ≤ 30 GeV2. These data allow on the one hand a comparison

to QCD and the generalised vector dominance model (GVDM). On the other hand, the large

kinematical range permits to check models with exotic mesons.
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1. Introduction

The two-photon process e+e− → e+e−γγ∗ → e+e−ρρ (1.1)

has already been measured at lower e+e− c.m. energies [1] but mostly without tagging. The data
presented here were obtained with tagging, thus allowing to cover a larger range in the virtuality
of one of the interacting photons, i.e. 0.2 ≤ Q2 ≤ 30 GeV2. For comparison, also preliminary un-
tagged data at Q2 < 0.02 GeV2 will be shown. Both ρ0ρ0 → π+π−π+π− and ρ+ρ− → π+π0π−π0

channels are studied. The large range in the two-photon c.m. energy, 1.1 GeV ≤ Wγγ ≤ 3 GeV
allows to study resonance production in t-channel exchange as well as to search for exotic mesons.

2. Data

The data were taken with the L3 detector [2] at LEP (Fig. 1).
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Figure 1: Sketch (sideview) of the L3 detectors used in this analysis.

The L3 detector was well suited for this search because there was only a small amount of
material in front of the electromagnetic BGO calorimeter (0.2 of a radiation length). This yielded a
low threshold in photon energies (≥ 60 MeV) and in momentum measurements of charged tracks
(pT ≥ 100 MeV). Two detectors were used for tagging: a) The so called very small angle tagger
(VSAT) detectors, situated on either side of the interaction point (IP) at a distance of 8.17 m,
behind the first quadrupole. It consisted of 4 BGO crystal calorimeters. b) The luminosity monitors
situated at either side of the IP at a distance of 2.73 m, each consisting of 2 detectors with 304 BGO
crystals per detector.

In the following, the data will be divided into four intervals in Q2:

1. Q2 < 0.02 GeV2, no electron tag, Q2 calculation from the 4 π state,

2. 0.2 GeV2 < Q2 < 0.85 GeV2, electron tag from the VSAT, Q2 calculation from the 4π state,

3. 1.2 GeV2 < Q2 < 8.5 GeV2 electron tag and Q2 calculation from the luminosity monitor,

4. 8.8 GeV2 < Q2 < 30 GeV2, electron tag and Q2 calculation from the luminosity monitor.
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The tagged data were taken at 91 GeV ≤
√

s≤ 209 GeV with an integrated luminosity of 854.7 pb−1 [3].
The untagged data were taken at 161 GeV ≤

√
s ≤ 209 GeV with an integrated luminosity of

697.7 pb−1 [4].
Fig. 2 shows the four-pion mass distribution (Wγγ ) and the 4 possible mass combinations

M(π±π0) (within 1.1 GeV ≤ Wγγ ≤ 3 GeV) for the reaction e+e− → e+e−tagπ+π−π0π0 for 0.2
GeV2 < Q2 < 0.85 GeV2. A clear ρ± signal is observed in M(π±π0).
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Figure 2: M(π+π−π0π0) (left) and M(π±π0), 4 entries per event (right).

Fig. 3 shows the 4 pion invariant mass distribution (Wγγ ) and the 4 possible mass combinations
M(π+π−) (within 1.1 GeV ≤ Wγγ ≤ 3 GeV) for the reaction e+e− → e+e−tagπ+π−π+π− for 0.2
GeV2 < Q2 < 0.85 GeV2. A strong ρ0 signal is observed in M(π+π−).
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Figure 3: M(π+π−π+π−) (left) and M(π+π−), 4 entries per event (right).

The fraction of ρρ events was determined by a maximum likelihood fit in intervals of Q2

and Wγγ . For the background, the following processes were considered: γγ ∗ → ρππ , γγ∗ →
a±2 (1320)π∓, γγ∗ → f2ππ and nonresonant γγ∗ → ππππ .
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The cross section σγγ(γγ∗ → ρρ) was obtained from the the σee(e+e− → e+e−ρρ) cross
section via σee = LT T ·σγγ where LT T is the two-photon luminosity function which is calculated
using the program GALUGA [5].

3. Results
Fig. 4 shows the γγ → ρ0ρ0 and γγ → ρ+ρ− cross sections as a function of the four-pion

masses in the four Q2 intervals mentioned above.
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Figure 4: The γγ → ρ0ρ0 and γγ → ρ+ρ− cross sections as a function of the four-pion mass a) at Q2 ≤
0.02GeV 2, b) 0.20GeV 2 ≤ Q2 ≤ 0.85GeV 2, c) 1.2GeV 2 ≤ Q2 ≤ 8.5GeV 2 and d) 8.8GeV 2 ≤ Q2 ≤ 30GeV 2.

For an isospin I = 0 state the ratio R of σ(γγ → ρ+ρ−)/σ(γγ → ρ0ρ0) is equal two. We
observe this for Q2 > 1.2 GeV 2. At low Q2, however, this ratio is reversed to R = 0.42 ± 0.05 ±
0.09 for Q2 < 0.02 GeV 2. This strong enhancement of ρ0ρ0 with respect to ρ+ρ− at the lowest Q2

value was interpreted as evidence for an isospin 2 resonance [6].
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In Fig. 5 the cross section dσee/dQ2 is compared to a QCD-based calculation [7] and the σγγ cross
section is compared to a parametrisation based on the GVDM model [8]. The QCD parametrisation
fits both σ(ρ+ρ−) and σ(ρ0ρ0) well over four orders of magnitude. There is a crossover of
the cross sections at a Q2 of around 1 GeV2 suggesting a different production mechanism at low
and high Q2. The GVDM parametrisation reproduces only σ(ρ 0ρ0) well. The Q2 evolution of
σ(ρ+ρ−) cannot be described by this parametrisation. A ρ-pole fit to the data fails for both the
ρ0ρ0 and the ρ+ρ− cross sections.
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Figure 5: dσee
dQ2 (left) and σγγ (right) as a function of Q2.
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