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We demonstrate that Abelian family symmetries allow one to enforce texture zeros in arbitrary

entries of the fermion mass matrices. Placing zeros in any number of elements of all occurring

mass matrices can be done with two alternative methods; one of them utilizes the group
�

n with

n sufficiently high. Concentrating on the lepton sector and on neutrino masses, we discuss the

methods in the case of seesaw models and scalar triplet models. As an illustration, we present an

example for each type of model.
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Texture zeros in fermion mass matrices [1] present the simplest procedure to reduce the num-
ber of parameters and to induce relations among the physical quantities (masses, mixing angles,
and CP phases). At first sight this procedure is quite arbitrary and in general it will not lead to
renormalizable models. However, we have shown that schemes with texture zeros can be promoted
to renormalizable models by an enlargement of the scalar sector [2]: For every set of fermion mass
matrices with texture zeros in arbitrary entries, there exists a scalar sector such that the texture
zeros are enforced by means of Abelian symmetries. In this talk we confine ourselves to the lepton
sector with Majorana neutrinos and extensions of the Standard Model (SM) below the GUT scale.
However, we emphasize that our method is completely general and also applies to the quark sector.

We will discuss the lepton sector with the seesaw mechanism and show that there are two
methods for the symmetry implementation of texture zeros. For this purpose, we consider the
Yukawa Lagrangian [2]�

Y ��� 3

∑
a � b � 1

�
Γab

¯�
Raφ †

abDLb � Γ̃ab ν̄Raφ̃ †
abDLb � 1

2
Yab χabν̄RaCν̄T

Rb 	 � H.c. 
 (1)

where DL denotes the left-handed doublets,
�

R the right-handed charged singlets, and νR the right-
handed neutrino singlets. Note that there is one scalar multiplet for every fermion bilinear! Thus we
have nine Higgs doublets φab with hypercharge � 1, nine Higgs doublets φ̃ab with hypercharge � 1,
and six gauge singlet scalars χab � χba. The corresponding vacuum expectation values (VEVs) are
denoted by vab, w

�

ab, and Xab, respectively. The charged-lepton mass matrix is given by � M�� ab �
v

�

abΓab, the neutrino Dirac mass matrix by � MD � ab � wabΓ̃ab, and the mass matrix of the heavy
neutrino singlets by � MR � ab � XabYab.

Method 1: We introduce the Abelian symmetry group � ��� f ��� f � for f � � Ra 
 DLa 
 νRa (a �
1 
 2 
 3), which has thus nine factors. Then, in order to allow the couplings in (1), the scalar multi-
plets transform as

φab : � � � � Ra ��� ��� DLb � 
 φ̃ab : � � � νRa ��� ��� DLb � 
 χab : ��� νRa ��� ��� νRb ��� (2)

There is one scalar multiplet for every entry in all three mass matrices. Now it is easy to place zeros
in arbitrary entries of M  , MD, and MR. Consider for instance M  . If there exists a φab transforming
as � � � � Ra ��� ��� DLb � , then Γab �� 0; if such a φab does not occur, then Γab � 0.

Method 2: We consider the symmetry group � ��� n or � ��� n ��� 2 with n sufficiently high.
It turns out that in the multi-Higgs SM with the seesaw mechanism one never needs a larger
group [2] than � 12 ��� 2. This is easily demonstrated by assuming, e.g., that ¯�

R and ν̄R transform
as � ω 
 ω2 
 ω5 � and DL transform as � ω 
 ω3 
 ω8 � with ω � exp � iπ � 6 � . Consequently, fermionic
bilinears transform as

¯�
RaDLb 
 ν̄RaDLb  "!#$ ω2 ω4 ω9

ω3 ω5 ω10

ω6 ω8 ω

%'&( 
 ν̄RaCν̄T
Rb  "!#$ ω2 ω3 ω6

ω3 ω4 ω7

ω6 ω7 ω10

%'&( � (3)

The additional � 2 : φ̃ab ) � φ̃ab 
 νR ) � νR couples the φab solely to
�

R and the φ̃ab solely to νR.
Now the argument for placing zeros goes as before. Consider Eq. (3); if for instance φ13 is present
transforming as ω9 under � 12, then � M � 13 �� 0, and so on.
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Some remarks to both methods are at order. In practice, in predictive models there are many
texture zeros, thus rather few scalars are necessary and a proliferation of scalars is avoided. More-
over, Methods 1 and 2 often merge more or less. The symmetry group � is large, therefore usually
soft breaking of � in the scalar potential is necessary to avoid Goldstone bosons.

Let us now consider texture zeros in neutrino mass matrices. We assume a diagonal M  , which
amounts to six texture zeros in this matrix. Then, as shown in [3], for the Majorana mass matrix � ν
of the light neutrinos, there are seven viable textures with two zeros. Modulo phase redefinitions,
such mass matrices have five physical parameters. Since there are nine physical quantities in � ν
(three neutrino masses, three mixing angles, one CKM-like phase, and two Majorana phases), in
such a scenario one has four relations among the physical quantities [3, 4].

As an illustration we consider two cases of [3]:

Case A2: � ν  "!#$ 0 � 0� � �
0 � �

%'&( 
 Case C: � ν  "!#$ � � �� 0 �� � 0

%'&( � (4)

There are several possible type I seesaw realizations of � ν � � MT
DM � 1

R MD for Case A2,
see [5]. As an example we take

MD  !#$ � 0 �
0 0 �
0 � 0

%'&( 
 MR  "!#$ � 0 �
0 � 0� 0 0

%'&( � (5)

Applying Method 1, we observe that M  being diagonal allows to make the identification � � � Ra � �� � DLa � . We choose � � DLa � � � 2 � DLa � , � � νRa � � � 4 � νRa � . Then we straightforwardly arrive at
the scalar sector and its transformation properties [2]:

φ̃11 : � �

4 � νR1 ��� � 2 � DL1 � 
 χ11 : � 4 � νR1 ��� � 4 � νR1 � 

φ̃13 : � �

4 � νR1 ��� � 2 � DL3 � 
 χ22 : � 4 � νR2 ��� � 4 � νR2 � 

φ̃23 : � �

4 � νR2 ��� � 2 � DL3 � 
 χ13 : � 4 � νR1 � � � 4 � νR3 � 

φ̃32 : � �

4 � νR3 � � � 2 � DL2 � � (6)

In addition, in the charged-lepton sector one Higgs doublet transforming trivially is needed. Thus
we end up with five Higgs doublets and three scalar singlets. In this example we have seen the
typical simplification of Method 1 if one mass matrix happens to be diagonal: � reduces to a direct
product of only six groups. Applying Method 2, we find a more economical symmetry realization
of Case A2: � � � 8 with two Higgs doublets and two scalar singlets [2].

All cases found in [3] can also be realized via Abelian symmetries and scalar triplets [6]; no
right-handed neutrino singlets are needed and there is a single Higgs doublet φ responsible for
the charged lepton masses. We exemplify this with Case C.1 The Yukawa couplings of the scalar
triplets are given by �

Y ∆ � 1
2 ∑

j

3

∑
a � b � 1

h j
ab DT

LaC � 1 � iτ2∆ j � DLb � H.c. (7)

1In [7], this case is realized via the non-Abelian symmetry group � 8.

P
o
S
(
H
E
P
2
0
0
5
)
1
8
6

186 / 3



Neutrino mass matrices, texture zeros, and family symmetries Walter Grimus

The VEVs w j of the neutral components of the scalar triplets ∆ j generate the neutrino mass matrix� ν � ∑ j w j h j . We confine ourselves to Method 2 and make the ansatz

DLa ) paDLa 
 �
Ra ) pa

�
Ra 
 φ ) φ with � pa � � 1 (8)

for the symmetry transformation. With all phase factors pa different from each other, M  is automat-
ically diagonal. A suitable choice is pe � 1 
 pµ � i 
 pτ � � i. Then the transformation properties
of the bilinears in leptonic doublets determine the number and the transformation properties of the
scalar triplets:

DT
LaC � 1DLb  "!#$ 1 i � i

i � 1 1� i 1 � 1

%'&(�� ��� �� ∆1 ) ∆1 

∆2 ) � i∆2 

∆3 ) i∆3 � (9)

Thus we have found a symmetry realization of Case C with the family symmetry � 4 which needs
only one Higgs doublet and three scalar triplets. For the symmetry realization of all cases of [3]
with scalar triplet models see [6]. Texture zeros in � ν with triplet realizations are stable under the
renormalization group running because only one Higgs doublet is present.

In summary, the two methods presented in [2] allow to embed all kinds of fermion mass matrix
schemes with texture zeros in renormalizable models, possibly at the cost of a proliferation of the
scalar sector; such an embedding is not unique. We emphasize the versatility of the methods which
would equally well apply in the quark sector or in Grand Unified Theories. Finally we note that
not only texture zeros in � ν but also in � � 1

ν can lead to interesting models [8].
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