

B Decays with J/psi or Baryons from Belle

Ruslan Chistov*†

Institute for Theoretical and Experimental Physics (ITEP), Russia E-mail: chistov@itep.ru

We report the results of a study of *B*-meson decays with J/ψ or baryons in the final state. It includes observation of $B^- \to J/\psi \Lambda \bar{p}$, $B^{+/0} \to \Lambda_c^+ \bar{\Lambda}_c^- K^{+/0}$ and $B^+ \to \bar{\Xi}_c^0 \Lambda_c^+$ decays and search for $B^- \to J/\psi \Sigma^0 \bar{p}$, $B^- \to J/\psi p \bar{p}$, $B^0 \to J/\psi \bar{D}^0$, $B^0 \to J/\psi \bar{D}^0 \pi^+$ and $B^0 \to \bar{\Xi}_c^- \Lambda_c^+$ decays. These results are based on the analysis of data collected at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy e^+e^- collider.

International Europhysics Conference on High Energy Physics July 21st - 27th 2005 Lisboa, Portugal

*Speaker. [†]On behalf of the Belle Collaboration

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.

http://pos.sissa.it/

1. Introduction

Recently, the Belle Collaboration observed a number of baryonic *B* decays, charmless [1] and charmful [2]. Belle continues a study of such decays and reports the results on the new modes.

To isolate the *B*-meson signal For all reported decays, to isolate the *B*-meson signal we use $\Delta E = \sum_i - E_{\text{beam}} (\text{or } \Delta M = M(B)_{\text{inv.}} - M(B)_{\text{table}}) \text{ and beam-energy constrained mass } M_{\text{bc}} = \sqrt{E_{\text{beam}}^2 - (\sum_i \vec{p}_i)^2}.$ Here $E_{\text{beam}} = \sqrt{s}/2$ is the beam energy in the center of mass, \vec{p}_i and E_i are the three-momenta and energies of the *B* candidate's decay products, $M(B)_{\text{inv.}}$ and $M(B)_{\text{table}}$ are the reconstructed B-meson mass and the world average *B*-meson mass.

2. Observation of $B^- \to J/\psi \Lambda \bar{p}$ and Searches for $B^- \to J/\psi \Sigma^0 \bar{p}$ and $B^0 \to J/\psi p \bar{p}$

We present the observation of the decay mode $B^- \rightarrow J/\psi \Lambda \bar{p}$, which is a new type of baryonic *B* decay, $B \rightarrow$ charmonium + baryons. Modes of this type were proposed as a potential explanation for the excess in the low momentum region of the inclusive J/ψ momentum spectrum in *B* decays [3]. The measured branching fraction and the results of a search for the related modes are shown in Table 1.

3. Search for $B^0 \rightarrow J/\psi \bar{D}^0$ and $B^+ \rightarrow J/\psi \bar{D}^0 \pi^+$

A search for this mode is motivated by the proposed intrinsic charm $(q\bar{b}c\bar{c})$ in the *B* meson as another explanation for the excess in the soft part of inclusive J/ψ momentum spectrum mentioned in the previous section [4]. The results of this search are presented in Table 1.

4. Observation of $B^{+/0} \rightarrow \Lambda_c^+ \bar{\Lambda}_c^- K^{+/0}$

Recently, Belle observed two-body baryonic *B* decay $\bar{B}^0 \to \Lambda_c^+ \bar{p}$ [10] proceeding via $b \to c\bar{u}d$ transition. In this and next section we present the first observations of exclusive *B* decays into two charmed baryons in the final state proceeding via $b \to c\bar{c}s$ transition. Figure 1 shows the ΔM and M_{bc} for the B^+ -meson decying into $\Lambda_c^+ \bar{\Lambda}_c^- K^+$. The measured branching fraction for this decay together with that for the isospin related mode $B^0 \to \Lambda_c^+ \bar{\Lambda}_c^- K^0$ are presented in Table 1.

5. Observation of $B^+ \to \bar{\Xi}^0_c \Lambda^+_c$ and Evidence for $B^0 \to \bar{\Xi}^-_c \Lambda^+_c$

The $\Delta E(M_{bc})$ distributions for the $B^+ \to \overline{\Xi}_c^0 \Lambda_c^+$ and $B^0 \to \overline{\Xi}_c^- \Lambda_c^+$ decays are shown in Fig. 2 a(b) and Fig. 2 c(d), respectively, where the superimposed curves are the fit results. The measured products of branching fractions are presented in Table 1.

Taking into account the theoretical predictions for $\mathscr{B}(\Xi_c^0 \to \Xi^- \pi^+)$ of $\sim (0.9-2)\%$ [9] and the Belle measurement of $\mathscr{B}(\bar{B^0} \to \Lambda_c^+ \bar{p})$ [10] we obtain $\mathscr{B}(B \to \overline{\Xi}_c^0 \Lambda_c^+)/\mathscr{B}(\bar{B^0} \to \Lambda_c^+ \bar{p}) \sim 100$. This disagrees with the naive expectation that the branching fractions for two-body baryonic *B* decays proceeding via $b \to c\bar{c}s$ and $b \to c\bar{u}d$ transitions should be of the same order [11].

6. Summary

In conclusion, the Belle Collaboration observes for the first time new types of *B* decays with J/ψ or baryons in the final state: $B^- \to J/\psi \Lambda \bar{p}$, $B^{+/0} \to \Lambda_c^+ \bar{\Lambda}_c^- K^{+/0}$ and $B^+ \to \bar{\Xi}_c^0 \Lambda_c^+$. Despite small energy release in all of these modes, the measured branching fractions are in the range of $(10^{-5} - 10^{-3})$. Two latter modes are the first examples of exclusive *B* decays into two charmed baryons. All these new results provide additional information on the mechanism in *B* decays of baryon formation.

Decay Branching Fraction	Result	Significance, σ 's
$\mathscr{B}(B^- o J/\psi\Lambdaar{p})$	$(11.6 \pm 2.8^{+1.8}_{-2.3}) \times 10^{-6}$ [5]	11.1
$\mathscr{B}(B^- o J/\psi\Sigma^0ar{p})$	$< 1.1 \times 10^{-5}$ @ 90% CL [5]	-
$\mathscr{B}(B^0 o J/\psi p \bar{p})$	$< 8.3 \times 10^{-7}$ @ 90% CL [5]	-
$\mathscr{B}(B^0 o J/\psi ar{D}^0)$	$< 2.0 imes 10^{-5}$ @ 90% CL [6]	-
$\mathscr{B}(B^+ o J/\psi ar{D}^0 \pi^+)$	$< 2.5 \times 10^{-5}$ @ 90% CL [6]	-
$\mathscr{B}(B^+ o \Lambda_c^+ ar\Lambda_c^- K^+)$	$(6.5^{+1.0}_{-0.9} \pm 1.1 \pm 3.4) \times 10^{-4}$ [7]	15.4
$\mathscr{B}(B^0 o\Lambda_c^+ar\Lambda_c^-K^0)$	$(7.9^{+2.9}_{-2.3}\pm1.2\pm4.1)\times10^{-4}$ [7]	6.6
$\mathscr{B}(B^+ o ar{\Xi}^0_c \Lambda^+_c) imes \mathscr{B}(ar{\Xi}^0_c o ar{\Xi}^+ \pi^-)$	$(4.8^{+1.0}_{-0.9} \pm 1.1 \pm 1.2) \times 10^{-5}$ [8]	8.7
$\mathscr{B}(B^0 \to \bar{\Xi}_c^- \Lambda_c^+) imes \mathscr{B}(\bar{\Xi}_c^- \to \bar{\Xi}^+ \pi^- \pi^-)$	$(9.3^{+3.7}_{-2.8}\pm 1.9\pm 2.4) \times 10^{-5}$ [8]	3.8

Table 1: Summary of reported results

References

- Belle Collaboration, Y.-J. Lee, M.-Z. Wang *et al.*, Phys. Rev. Lett. **93**, 211801 (2004); Belle Collaboration, M.-Z. Wang, Y.-J. Lee, *et al.*, Phys. Rev. Lett. **90**, 201802 (2003); Belle Collaboration, K. Abe *et al.*, Phys. Rev. Lett. **88**, 181803 (2002).
- Belle Collaboration, K. Abe *et al.*, Phys. Rev. Lett. **89**, 151802 (2002); H. Kichimi, Nucl. Phys. B Proc. Suppl. **142**, 197 (2005).
- [3] S. J. Brodsky and F. S. Navarra, Phys. Lett. B 411, 152 (1997).
- [4] C. H. Chang and W. S. Hou, Phys. Rev. D 64, 071501(R) (2001).
- [5] Belle Collaboration, L. M. Zhang, Z. P. Zhang et al., Phys. Rev. D 71, 091107 (2005).
- [6] Belle Collaboration, Q. L. Xie et al., Phys. Rev. D 72, 051105(R) (2005).
- [7] Belle Collaboration, K. Abe et al., hep-ex/0508015.
- [8] Belle Collaboration, R.Chistov et al., hep-ex/0510074.
- [9] B. Desplanques, J. F. Donoghue and B. R. Holstein, Annals Phys. **124**, 449 (1980); P. Zenczykowski, Phys. Rev. D **40**, 2290 (1989); P. Zenczykowski, Phys. Rev. D **50**, 402 (1994).
- [10] Belle Collaboration, N. Gabyshev, H. Kichimi et al., Phys. Rev. Lett. 90, 121802 (2003).
- [11] V. L. Chernyak and I. R. Zhitnitsky, Nucl. Phys B 345, 137 (1990).

Figure 1: The ΔM (upper) and M_{bc} (lower) distributions for the B^+ -meson decying into $\Lambda_c^+ \bar{\Lambda}_c^- K^+$.

Figure 2: The ΔE and M_{bc} distributions for the $B^+ \to \bar{\Xi}_c^0 \Lambda_c^+(a, b)$ and $B^0 \to \bar{\Xi}_c^- \Lambda_c^+(c, d)$ candidates.