PROCEEDINGS OF SCIENCE

PoS

Belle: $sin(2\phi_1)$ with charmless and radiative decays

Karim Trabelsi*

University of Hawaii, USA E-mail: karim@phys.hawaii.edu

On behalf of the Belle Collaboration

We present measurements of time-dependent *CP* asymmetries in $B^0 \rightarrow \phi K^0$, $\eta' K^0$, $K_S^0 K_S^0 K_S^0$, $K_S^0 \pi^0$, $f_0(980)K_S^0$, $\omega(782)K_S^0$ and $K^+K^-K_S^0$ decays based on a sample $386 \times 10^6 B\bar{B}$ pairs collected at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB energy-asymmetric $e^+e^$ collider. These decays are dominated by the $b \rightarrow s$ gluonic penguin transition and are sensitive to new *CP*-violating phases from physics beyond the standard model. *CP*-violation parameters $\sin 2\phi_1^{\text{eff}}$ and \mathscr{A} for each of the decay modes are obtained from the asymmetries in the distributions of the proper-time intervals between the two *B* decays. We also present measurements of *CP*-violation parameters for the $b \rightarrow s\gamma$ transition channel, $B^0 \rightarrow K_S^0 \pi^0 \gamma$.

International Europhysics Conference on High Energy Physics July 21st - 27th 2005 Lisboa, Portugal

*Speaker.

1. Introduction

The Standard Model (SM) predicts *CP* violation to occur in B^0 meson decays owing to a complex phase in the 3×3 Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix. This phase is illustrated by plotting the unitarity condition $V_{ub}^*V_{ud} + V_{cb}^*V_{cd} + V_{tb}^*V_{td} = 0$ as vectors in the complex plane: the phase results in a triangle of nonzero height. Various measurements in the *B* system are sensitive to the internal angles ϕ_1 , ϕ_2 and ϕ_3 ; The angle ϕ_1 is determined by measuring the time dependence of decays to *CP*-eigenstates. This distribution is given by

$$\frac{dN}{d\Delta t} \propto e^{-\Delta t/\tau} \left[1 - q\Delta\omega + q(1 - 2\omega) \left[\mathscr{A}\cos(\Delta m\Delta t) + \mathscr{S}\sin(\Delta m\Delta t) \right] \right]$$
(1.1)

where q = +1(-1) corresponds to $B^0(\bar{B}^0)$ tags, ω is the mistag probability, $\Delta \omega$ is a possible difference in ω between B^0 and \bar{B}^0 tags, and Δm is the B^0 - \bar{B}^0 mass difference. The *CP*-violating coefficients \mathscr{A} and \mathscr{S} are functions of the parameter λ : $\mathscr{A} = (|\lambda|^2 - 1)/(|\lambda|^2 + 1)$ and $\mathscr{S} = 2\Im(\lambda)/(|\lambda|^2 + 1)$, where

$$\lambda = \frac{q}{p} \frac{A(\bar{B}^0 \to f)}{A(B^0 \to f)} \sim \sqrt{\frac{M_{12}^*}{M_{12}} \frac{A(\bar{B}^0 \to f)}{A(B^0 \to f)}} = \left(\frac{V_{td}V_{tb}^*}{V_{td}^* V_{tb}}\right) \frac{A(\bar{B}^0 \to f)}{A(B^0 \to f)}$$

In this expression, q and p are the complex coefficients relating the flavor eigenstates B^0 and \bar{B}^0 to the mass eigenstates, M_{12} is the off-diagonal element of the $B^0-\bar{B}^0$ mass matrix, and we assume that the off-diagonal element of the decay matrix is much smaller: $\Gamma_{12} \ll M_{12}$. If only one weak phase enters the decay amplitude $A(\bar{B}^0 \to f)$, then $|A(\bar{B}^0 \to f)/A(B^0 \to f)| = 1$ and $\lambda = \eta_f e^{i2\theta}$, where $\eta_f = \pm 1$ is the *CP* of the final state f. For the final states discussed here, $|\theta| = \phi_1$.

 $\sin 2\phi_1$ is most accurately measured using $B^0 \to J/\psi K^0$ decays. These decays are dominated by a $b \to c\bar{c}s$ tree amplitude and a $b \to s\bar{c}c$ penguin amplitude, the *CP* parameters are therefore $\mathscr{S} = \sin 2\phi_1$, $\mathscr{A} = 0$. The measurement of $\sin 2\phi_1$ is now extended to the $b \to s$ transition decays in which contributions from New Physics can be expected [1]. The cleanest example is the decay $B \to \phi K^0$. In the SM, this decay occurs through a pure penguin diagram and the *CP* phase ϕ_1 originally acquired in the $B^0 - \bar{B}^0$ mixing diagram is not changed. If new particles contribute in the loop, they can introduce new couplings with new phases and the measured $\sin 2\phi_1$ becomes different from the SM prediction [2]. Therefore the measurement of $\sin 2\phi_1$ for such decays can be a sensitive probe to New Physics.

The phenomena of time-dependent *CP* violation in $b \to s\gamma$ decays such as $B^0 \to K_S^0 \pi^0 \gamma$ are also sensitive to physics beyond the SM. Within the SM, the photon emitted from a B^0 (\overline{B}^0) meson is dominantly right-handed (left-handed). Therefore the polarization of the photon carries information on the original *b*-flavor and the decay is, thus, almost flavor-specific. As a result, the SM predicts a small asymmetry [3] and any significant deviation from this expectation would be a manifestation of new physics. It was pointed out that in decays of the type of $B^0 \to P^0 Q^0 \gamma$, where P^0 and Q^0 represent any *CP* eigenstate spin-0 neutral particles (e.g. $P^0 = K_S^0$ and $Q^0 = \pi^0$), many new physics effects on the mixing-induced *CP* violation do not depend on the resonant structure of the $P^0 Q^0$ system [4].

The results presented are from the Belle experiment, which runs at the KEKB asymmetric-energy e^+e^- collider operating at the $\Upsilon(4S)$ resonance. Belle's previous measurements [5] of *CP* violation

in $B^0 \rightarrow \phi K_S^0$, ϕK_L^0 , $\eta' K_S^0$, $K_S^0 K_S^0 K_S^0$, $K_S^0 \pi^0$, $f_0 K_S^0$, ωK_S^0 and $K^+ K^- K_S^0$ decays were based on a 253 fb⁻¹ data sample containing $275 \times 10^6 B\bar{B}$ pairs. In this report, we describe improved measurements for these decays incorporating an additional 104 fb⁻¹ data sample that contains $111 \times 10^6 B\bar{B}$ pairs for a total of $386 \times 10^6 B\bar{B}$ pairs.

At the KEKB energy-asymmetric e^+e^- (3.5 on 8.0 GeV) collider, the $\Upsilon(4S)$ is produced with a Lorentz boost of $\beta \gamma = 0.425$ nearly along the electron beamline (z). Since the B^0 and \bar{B}^0 mesons are approximately at rest in the $\Upsilon(4S)$ center-of-mass system (cms), Δt can be determined from the displacement in z between the f_{CP} and f_{tag} decay vertices: $\Delta t \simeq (z_{CP} - z_{tag})/(\beta \gamma c) \equiv \Delta z/(\beta \gamma c)$.

The Belle detector is a large-solid-angle magnetic spectrometer that consists of a silicon vertex detector (SVD), a 50-layer central drift chamber (CDC), an array of aerogel threshold Čerenkov counters (ACC), a barrel-like arrangement of time-of-flight scintillation counters (TOF), and an electromagnetic calorimeter (ECL) comprised of CsI(Tl) crystals located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. An iron flux-return located outside of the coil is instrumented to detect K_L^0 mesons and to identify muons (KLM). The detector is described in detail elsewhere [6]. Two different inner detector configurations were used. For the first sample of $152 \times 10^6 B\bar{B}$ pairs, a 2.0 cm radius beampipe and a 3-layer silicon vertex detector were used; for the latter $123 \times 10^6 B\bar{B}$ pairs, a 1.5 cm radius beampipe, a 4-layer silicon detector and a small-cell inner drift chamber were used[7].

2. Selection

We reconstruct the following B^0 decay modes to measure CP asymmetries: $B^0 \to \phi K_S^0$, ϕK_L^0 , $\eta' K_S^0$, $\eta' K_L^0$, $K_S^0 K_S^0 K_S^0$, $K_S^0 \pi^0$, $f_0 K_S^0$, ωK_S^0 , $K^+ K^- K_S^0$ and $K_S^0 \pi^0 \gamma$ decays. We exclude $K^+ K^-$ pairs that are consistent with a $\phi \to K^+ K^-$ decay from the $B^0 \to K^+ K^- K_S^0$ sample. The intermediate meson states are reconstructed from the following decays: $\pi^0 \to \gamma\gamma$, $K_S^0 \to \pi^+ \pi^-$, $\eta \to \gamma\gamma$, $\rho^0 \to \pi^+ \pi^-$, $\omega \to \pi^+ \pi^- \pi^0$, $\eta' \rho^0 \gamma$ or $\eta \pi^+ \pi^-$, $f_0 \to \pi^+ \pi^-$, and $\phi \to K^+ K^-$. In addition, $K_S^0 \to \pi^0 \pi^0$ decays are used for $B^0 \to \phi K_S^0$ and $\eta' K_S^0$ decays, and $\eta \to \pi^+ \pi^- \pi^0$ for the case $B^0 \to \eta' K_S^0$ ($K_S^0 \to \pi^+ \pi^-$). The selection is described in detail for each mode in [8, 9].

3. Results

We determine \mathscr{S} and \mathscr{A} for each mode by performing an unbinned maximum-likelihood fit to the observed Δt distribution. The probability density function (PDF) expected for the signal distribution (Eq. 1.1) is convolved with the proper-time interval resolution R_{sig} which takes into account the finite vertex resolution. This resolution function is determined using flavor-specific *B* decays governed by semileptonic or hadronic $b \rightarrow c$ transitions.

Table 1 sumarizes the fit results of \mathscr{S} and \mathscr{A} . We have also measured *CP* asymmetries in $B^0 \to J/\psi K^0$ decays using the same data sample [10]. The same analysis procedure as that used for the $b \to s$ modes yields $\sin 2\phi_1 = +0.652 \pm 0.039(\text{stat}) \pm 0.020(\text{syst})$, which serves as a SM reference point, and $\mathscr{A} = +0.010 \pm 0.026(\text{stat}) \pm 0.036(\text{syst})$. We do not see any significant deviation between the results for each $b \to s$ mode and those for $B^0 \to J/\psi K^0$.

Mode	SM expectations for \mathscr{S}	S	A
ϕK^0	$+\sin 2\phi_1$	$+0.44\pm0.27\pm0.05$	$+0.14\pm0.17\pm0.07$
ϕK_S^0	$+\sin 2\phi_1$	$+0.19 \pm 0.32$	$+0.12 \pm 0.20$
ϕK_L^0	$-\sin 2\phi_1$	-1.54 ± 0.59	$+0.38 \pm 0.36$
$\eta' K^0$	$+\sin 2\phi_1$	$+0.62\pm0.12\pm0.04$	$-0.04 \pm 0.08 \pm 0.06$
$\eta' K_S^0$	$+\sin 2\phi_1$	$+0.60 \pm 0.14$	-0.04 ± 0.09
$\eta' K_L^0$	$-\sin 2\phi_1$	-0.73 ± 0.29	-0.02 ± 0.18
$K_{S}^{0}K_{S}^{0}K_{S}^{0}$	$-\sin 2\phi_1$	$-0.58 \pm 0.36 \pm 0.08$	$+0.50\pm 0.23\pm 0.06$
$K_S^0 \pi^0$	$+\sin 2\phi_1$	$+0.22\pm0.47\pm0.08$	$+0.11\pm0.18\pm0.08$
$f_0 K_S^0$	$-\sin 2\phi_1$	$-0.47 \pm 0.36 \pm 0.08$	$-0.23 \pm 0.23 \pm 0.13$
ωK_S^0	$+\sin 2\phi_1$	$+0.95\pm0.53~^{+0.12}_{-0.15}$	$+0.19\pm0.39\pm0.13$
$K^+K^-K^0_S$	$-(2f_+-1)\sin 2\phi_1$	$-0.52\pm0.16\pm0.03$	$-0.06 \pm 0.11 \pm 0.07$

Table 1: Results of the fits to the Δt distributions for the $b \rightarrow s$ modes. The first error is statistical and the second error is systematic. f_+ is the *CP*-even fraction of the $K^+K^-K_S^0$ state.

We obtain the following results in the $K_S^0 \pi^0 \gamma$ mode with $K_S^0 \pi^0$ invariant mass covering the full range up to 1.8 GeV/ c^2 :

$$\mathscr{S} = +0.08 \pm 0.41(\text{stat}) \pm 0.10(\text{syst}),$$

 $\mathscr{A} = +0.12 \pm 0.27(\text{stat}) \pm 0.10(\text{syst}).$

These results superseed the ones obtained in a previous publication [11]. We do not find any significant CP asymmetry, and therefore no indication of new physics from right handed currents, with the present statistics.

References

- [1] A.G. Akeroyd et al., hep-ex/0406071 and references therein.
- [2] See for example, Y. Grossman and M.P. Worah, Phys. Lett. B **395**, 241 (1997); D. London and A. Soni, Phys. Lett. B **407**, 61 (1997); T. Moroi, Phys. Lett. B **493**, 366 (2000); D. Chang, A. Masiero and H. Murayama, Phys. Rev. D **67**, 075013 (2003); S. Baek, T. Goto, Y. Okada and K. Okumura, Phys. Rev. D **64**, 095001 (2001).
- [3] D. Atwood, M. Gronau and A. Soni, Phys. Rev. Lett. 79, 185 (1997); B. Grinstein, Y. Grossman,
 Z. Ligeti and D. Pirjol, Phys. Rev. D 71, 011504 (2005).
- [4] D. Atwood, T. Gershon, M. Hazumi and A. Soni, Phys. Rev. D 71, 076003 (2005).
- [5] K.F. Chen et al. (Belle Collab.), Phys. Rev. D 72, 012004 (2005).
- [6] A. Abashian et al. (Belle Collab.), Nucl. Instr. and Meth. A 479, 117 (2002).
- [7] Y. Ushiroda (Belle SVD2 Group), Nucl. Instr. and Meth.A 511, 6 (2003).
- [8] K. Abe et al. (Belle Collab.), hep-ex/0507037.
- [9] K. Abe et al. (Belle Collab.), hep-ex/0507059.
- [10] O. Tajima, these proceedings.
- [11] Y. Ushiroda et al. (Belle Collab.), Phys. Rev. Lett. 94, 231601 (2005).