Polarization in $B \rightarrow \phi K^{*}$ Decays and Probe of New Physics

Kwei-Chou Yang**
Department of Physics, Chung Yuan Christian University
Chung-Li, Taiwan 320, Republic of China
E-mail: kcyang@cycu.edu.tw

The observation of sizable transverse fractions for $B \rightarrow \phi K^{*}$ decays is inconsistent with the factorization expectation. The tensor-type and/or scalar-type new-physics operators can account for the discrepancy and the observed $f_{\perp} / f_{\|} \approx 1$. Analogously, the transverse fractions of $B \rightarrow h_{1}(1380) K^{*}$ decays can become sizable due to new-physics contributions. On the other hand, it was argued that the $B \rightarrow \phi K^{*}$ data can be accounted for in the standard model if including the annihilation topologies. If it is true, we further show that the same annihilation effects can greatly enhance only the longitudinal fraction of $B \rightarrow h_{1}(1380) K^{*}, b_{1}(1235) K^{*}$ but contribute negligibly to the transverse components. The measurements of these decays can thus help us to realize the role of annihilation topologies in B decays and offer a theoretically clean window to search for the evidence of new physics.

International Europhysics Conference on High Energy Physics
July 21st-27th 2005
Lisboa, Portugal

[^0]
1. Introduction

The BaBar and Belle collaborations have recently measured $B \rightarrow \phi K^{*}$ decays and showed that the total transverse fractions with $f_{\perp}($ the perpendicular fraction $) \simeq f_{\|}$(the parallel fraction) are about equal to the longitudinal one [1]. In the standard model (SM) the relation for different helicity amplitudes is $\bar{H}_{00}: \bar{H}_{--}: \bar{H}_{++} \sim \mathscr{O}(1): \mathscr{O}\left(1 / m_{b}\right): \mathscr{O}\left(1 / m_{b}^{2}\right)$ and thus the transverse fractions are suppressed by $1 / m_{b}^{2}$. One may therefore resort to new physics (NP) to explain the observations. However, several NP proposals seem to be ruled out compared with the data (see discussion in [2]). It was first recognized in [2] that only two classes of NP operators are relevant in resolving the transverse anomaly in the ϕK^{*} modes. The first class of operators with structures $\sigma\left(1-\gamma_{5}\right) \otimes \sigma\left(1-\gamma_{5}\right)$ and $\left(1-\gamma_{5}\right) \otimes\left(1-\gamma_{5}\right)$ contributes to helicity amplitudes as $\bar{H}_{00}: \bar{H}_{--}: \bar{H}_{++} \sim \mathscr{O}\left(1 / m_{b}\right): \mathscr{O}\left(1 / m_{b}^{2}\right): \mathscr{O}(1)$, while the second class of operators with structures $\sigma\left(1+\gamma_{5}\right) \otimes \sigma\left(1+\gamma_{5}\right)$ and $\left(1+\gamma_{5}\right) \otimes\left(1+\gamma_{5}\right)$ results in $\bar{H}_{00}: \bar{H}_{++}: \bar{H}_{--} \sim \mathscr{O}\left(1 / m_{b}\right): \mathscr{O}\left(1 / m_{b}^{2}\right):$ $\mathscr{O}(1)$.

2. New-physics effects

The relevant NP effective Hamiltonian $\mathscr{H}^{\mathrm{NP}}$ for $b \rightarrow s \bar{s} s$ processes [2], is

$$
\begin{equation*}
\mathscr{H}^{\mathrm{NP}}=\frac{G_{F}}{\sqrt{2}} \sum_{i=15-18,23-26} c_{i}(\mu) O_{i}(\mu)+\text { H.c. }, \tag{2.1}
\end{equation*}
$$

where the scalar-type operators are

$$
\begin{array}{ll}
O_{15}=\bar{s}\left(1+\gamma^{5}\right) b \bar{s}\left(1+\gamma^{5}\right) s, & O_{16}=\bar{s}_{\alpha}\left(1+\gamma^{5}\right) b_{\beta} \bar{s}_{\beta}\left(1+\gamma^{5}\right) s_{\alpha} \\
O_{17}=\bar{s}\left(1-\gamma^{5}\right) b \bar{s}\left(1-\gamma^{5}\right) s, & O_{18}=\bar{s}_{\alpha}\left(1-\gamma^{5}\right) b_{\beta} \bar{s}_{\beta}\left(1-\gamma^{5}\right) s_{\alpha} \tag{2.2}
\end{array}
$$

and the tensor-type operators are

$$
\begin{array}{ll}
O_{23}=\bar{s} \sigma^{\mu v}\left(1+\gamma^{5}\right) b \bar{s} \sigma_{\mu v}\left(1+\gamma^{5}\right) s, & O_{24}=\bar{s}_{\alpha} \sigma^{\mu v}\left(1+\gamma^{5}\right) b_{\beta} \bar{s}_{\beta} \sigma_{\mu v}\left(1+\gamma^{5}\right) s_{\alpha} \\
O_{25}=\bar{s} \sigma^{\mu v}\left(1-\gamma^{5}\right) b \bar{s} \sigma_{\mu v}\left(1-\gamma^{5}\right) s, & O_{26}=\bar{s}_{\alpha} \sigma^{\mu v}\left(1-\gamma^{5}\right) b_{\beta} \bar{s}_{\beta} \sigma_{\mu v}\left(1-\gamma^{5}\right) s_{\alpha} \tag{2.3}
\end{array}
$$

with α, β being the color indices. By the Fierz transformation, $O_{15,16}$ and $O_{17,18}$ operators can be expressed in terms of linear combination of $O_{23,24}$ and $O_{25,26}$ operators, respectively, i.e.,

$$
\begin{equation*}
O_{15(17)}=\frac{1}{12} O_{23(25)}-\frac{1}{6} O_{24(26)}, \quad O_{16(18)}=\frac{1}{12} O_{24(26)}-\frac{1}{6} O_{23(25)} . \tag{2.4}
\end{equation*}
$$

The helicity amplitudes for $\bar{B} \rightarrow \phi \bar{K}$ decays due to the NP operators read (in units of $G_{F} / \sqrt{2}$)

$$
\begin{align*}
& \bar{A}_{0}^{N P}=-4 i f_{\phi}^{\perp} m_{B}^{2}\left[\tilde{a}_{23}-\tilde{a}_{25}\right]\left[h_{2} T_{2}\left(m_{\phi}^{2}\right)-h_{3} T_{3}\left(m_{\phi}^{2}\right)\right], \\
& \bar{A}_{\|}^{N P}=4 i \sqrt{2} f_{\phi}^{\perp}\left(m_{B}^{2}-m_{K^{*}}^{2}\right)\left(\tilde{a}_{23}-\tilde{a}_{25}\right) T_{2}\left(m_{\phi}^{2}\right), \\
& \bar{A}_{\perp}^{N P}=8 i \sqrt{2} f_{\phi}^{\perp} m_{B} p_{c}\left(\tilde{a}_{23}+\tilde{a}_{25}\right) T_{1}\left(m_{\phi}^{2}\right), \tag{2.5}
\end{align*}
$$

where

$$
\begin{equation*}
\tilde{a}_{23}=a_{23}+\frac{a_{24}}{2}-\frac{a_{16}}{8}, \quad \tilde{a}_{25}=a_{25}+\frac{a_{26}}{2}-\frac{a_{18}}{8}, \tag{2.6}
\end{equation*}
$$

are defined as $\tilde{a}_{23}=-\left|\tilde{a}_{23}\right| e^{i \delta_{23}} e^{i \phi_{23}}, \tilde{a}_{25}=\left|\tilde{a}_{25}\right| e^{i \delta_{25}} e^{i \phi_{25}}$ with $\delta_{23,25}$ and $\phi_{23,25}$ being the strong phases and NP weak phases, respectively. Here we have defined
$a_{2 i(2 i-1)}=c_{2 i(2 i-1)}+\frac{c_{2 i-1(2 i)}}{N_{c}}+$ nonfactorizable corrections, with $\mathrm{i} \in$ integer number.

2.1 NP scenario I with $O_{15,16,23,24}$ absent

This scenario gives $\bar{H}_{++} \gg \bar{H}_{--}$which is consistent with the standard model expectation, and the NP effects characterized by $O_{17,18,25,26}$ operators are lumped into the single effective coefficient \tilde{a}_{25}. In the best fit analysis, we have

$$
\begin{equation*}
\left|\tilde{a}_{25}\right|=(2.0 \pm 0.3) \times 10^{-4}, \quad \delta_{25}=1.00 \pm 0.30, \quad \phi_{25}=-0.02 \pm 0.06 \tag{2.8}
\end{equation*}
$$

2.2 Scenario II with $O_{17,18,25,26}$ absent

We get $\bar{H}_{--} \gg \bar{H}_{++}$if $O_{15,16}, O_{23,24}$ operators are dominant. In this scenario, we obtain

$$
\begin{equation*}
\left|\tilde{a}_{23}\right|=(1.5 \pm 0.3) \times 10^{-4}, \quad \delta_{23}=-0.47 \pm 0.20, \quad \phi_{23}=-0.07 \pm 0.06 \tag{2.9}
\end{equation*}
$$

It is interesting to note that the phase difference for \bar{A}_{\perp} and $\bar{A}_{\|}$reads

$$
\begin{equation*}
\arg \left(\bar{A}_{\perp}\right)-\arg \left(\bar{A}_{\|}\right) \approx \pi \tag{2.10}
\end{equation*}
$$

in the scenario I, but becomes

$$
\begin{equation*}
\arg \left(\bar{A}_{\perp}\right)-\arg \left(\bar{A}_{\|}\right) \approx 0 \tag{2.11}
\end{equation*}
$$

in the scenario II. These two possible NP solutions can be further distinguished in $B \rightarrow h_{1}(1380) K^{*}$ measurements for which there is no phase ambiguity existing between the two NP scenarios [3].

3. Probe of new physics

The possible NP effects can be further tested from measurements of the factorization-suppressed $\bar{B} \rightarrow h_{1}(1380) \bar{K}$ decays, where $h_{1}(1380)$ is a $1^{1} P_{1}$ state in the quark-model description. The $\bar{B} \rightarrow h_{1}(1380) \bar{K}$ amplitudes vanish in the factorization limit. Nevertheless, the light-cone distribution amplitudes of $h_{1}(1380)$ defined by the bi-local vector and axial-vector currents are greatly antisymmetric under the exchange of quark and anti-quark momentum fractions, so that "only" the longitudinal fraction receives sizable QCD corrections. On the other hand, interestingly, the local tensor operator can couple to the transversely polarized $h_{1}(1380)$ meson. Thus, in complete analogy to the $B \rightarrow \phi K^{*}$ decays, the NP tensor operators could enhance the transverse fractions of the $h_{1}(1380) \bar{K}$ modes. The $\bar{B} \rightarrow h_{1}(1380) \bar{K}$ decay amplitudes in the transversity basis, in units of $G_{F} / \sqrt{2}$, due to the NP operators read

$$
\begin{align*}
& \bar{A}_{0}^{N P}=4 f_{h_{1}}^{\perp} m_{B}^{2}\left(\tilde{a}_{23}+\tilde{a}_{25}\right)\left[h_{2} T_{2}\left(m_{h_{1}}^{2}\right)-h_{3} T_{3}\left(m_{h_{1}}^{2}\right)\right] \\
& \bar{A}_{\|}^{N P}=-4 \sqrt{2} f_{h_{1}}^{\perp}\left(m_{B}^{2}-m_{K^{*}}^{2}\right)\left(\tilde{a}_{23}+\tilde{a}_{25}\right) T_{2}\left(m_{h_{1}}^{2}\right) \\
& \bar{A}_{\perp}^{N P}=-8 \sqrt{2} f_{h_{1}}^{\perp} m_{B} p_{c}\left(\tilde{a}_{23}-\tilde{a}_{25}\right) T_{1}\left(m_{h_{1}}^{2}\right) \tag{3.1}
\end{align*}
$$

The results are shown in Table 1 [3]. Unlike the $\phi \bar{K}^{*}$ modes, the two possible NP solutions are distinguishable in the $h_{1}(1380) K^{*}$ modes since $\arg \left(A_{\|} / A_{0}\right)$ (scenario 1$) \neq-\arg \left(A_{\|} / A_{0}\right)$ (scenario 2).

New physics	Modes	$\mathrm{BR}_{\text {tot }}$	$\mathrm{BR}_{\\|}$	BR_{\perp}	$\arg \left(\frac{A_{\\|}}{A_{0}}\right)$	$\arg \left(\frac{A_{\perp}}{A_{0}}\right)$
Scenario 1:	$h_{1} K^{* 0}$	14.5 ± 4.0	3.2 ± 1.5	2.0 ± 1.0	-2.23 ± 0.25	0.49 ± 0.15
Scenario 2:	$h_{1} K^{* 0}$	8.5 ± 2.0	2.0 ± 0.5	1.8 ± 0.5	-0.86 ± 0.20	-0.97 ± 0.20

Table 1: New-physics predictions for $\bar{B} \rightarrow h_{1}(1380) \bar{K}^{*}$ modes, where the branching ratios (BRs) are given in units of 10^{-6} and phases in radians. \tilde{a}_{25} and \tilde{a}_{23} are used with constraints by the $B \rightarrow \phi K^{*}$ data.

4. Probe of annihilation topologies in the standard model

Within the standard model framework, it had been argued [4] that the annihilation amplitudes, suppressed by $1 / m_{b}^{2}$ but logarithmically enhanced, could account for the $B \rightarrow \phi K^{*}$ data if a moderate value of the BBNS parameter ρ_{A} [5] is applied. We found that if the large transverse fractions of ϕK^{*} modes mainly originate from the annihilation topologies, then the resultant enhancement should be observed only in the longitudinal component of $h_{1} K^{*}$ and $b_{1} K^{*}$ modes such that the resulting $f_{L}\left(h_{1}(1380) K^{*}\right)$ and $f_{L}\left(b_{1}^{+}(1235) K^{*-}\right)$ could be even larger than $f_{L}\left(\phi K^{*}\right)$ and $f_{L}\left(\rho^{+} K^{*-}\right)$, respectively. Note that h_{1} and b_{1} are $1^{1} P_{1}$ states. The annihilation amplitudes for $\bar{B} \rightarrow h_{1} \bar{K}^{*}$ read

$$
\begin{align*}
& A_{3}^{f, 0}\left(h_{1} \bar{K}^{*}\right) \approx-18 \pi \alpha_{s}\left(X_{A}^{0}-2\right)\left[\frac{2 m_{h_{1}} f_{h_{1}}^{\perp}}{m_{b} f_{h_{1}}}\left(2 X_{A}^{0}-1\right)-\frac{2 m_{K^{*}} a_{1}^{h_{1}, \|} f_{K^{*}}^{\perp}}{m_{b} f_{K^{*}}}\left(6 X_{A}^{0}-11\right)\right] \tag{4.1}\\
& A_{3}^{f,-}\left(h_{1} \bar{K}^{*}\right) \approx-18 \pi \alpha_{s}\left(X_{A}^{-}-1\right)\left[\frac{2 m_{K^{*}} f_{h_{1}}^{\perp}}{m_{b} f_{h_{1}}}\left(2 X_{A}^{-}-3\right)-\frac{2 m_{h_{1}} a_{1}^{h_{1}, \|} f_{K^{*}}^{\perp}}{m_{b} f_{K^{*}}}\left(2 X_{A}^{-}-\frac{17}{3}\right)\right] \tag{4.2}
\end{align*}
$$

and $A_{3}^{f,+}\left(h_{1} \bar{K}^{*}\right) \approx 0$, where $X_{A}^{h}=\left(1+\rho_{A}^{h} e^{i \varphi_{A}^{h}}\right) \ln \left(m_{B} / \Lambda_{h}\right)$ with $\rho_{A}^{h}<1$. The numerical results of some interesting modes are listed in Table 2. According to the annihilation scenario, we obtained $f_{T}\left(\rho^{+} K^{*-}\right) \simeq 0.23 \sim 0.46,2 \mathrm{BR}_{\mathrm{T}}\left(\rho^{0} K^{*-}\right) \sim \mathrm{BR}_{\mathrm{T}}\left(\rho^{-} \bar{K}^{* 0}\right) \sim \mathrm{BR}_{\mathrm{T}}\left(\rho^{+} K^{*-}\right)$. We also find some $B \rightarrow 1^{3} P_{1} V$ processes can offer further tests of the present NP scenarios and annihilation topologies [6].

	$\mathrm{BR}_{\text {tot }}^{\mathrm{wo}}$	$\mathrm{BR}_{\\|}^{\mathrm{wo}}$	$\mathrm{BR}_{\perp}^{\mathrm{wo}}$	$\mathrm{BR}_{\text {tot }}^{\mathrm{w}}$	$\mathrm{BR}_{\\|}^{\mathrm{w}}$	$\mathrm{BR}_{\perp}^{\mathrm{w}}$
$\bar{B}^{0} \rightarrow h_{1}(1380) K^{* 0}$	$3.2_{-1.2}^{+1.5}$	$\lesssim 0.2$	$\lesssim 0.2$	$12.0_{-3.0}^{+4.1}$	$\lesssim 1.0$	$\lesssim 1.0$
$\bar{B}^{0} \rightarrow b_{1}^{+}(1235) K^{*-}$	1.7 ± 1.3	$\lesssim 0.01$	$\lesssim 0.01$	7.0 ± 3.5	$\lesssim 0.3$	$\lesssim 0.3$
$\bar{B}^{0} \rightarrow \rho^{+} K^{*-}$	6.3 ± 2.0	0.2 ± 0.1	0.2 ± 0.1	6.2 ± 2.0	1.2 ± 0.7	1.2 ± 0.7

Table 2: CP-averaged branching ratios (in units of 10^{-6}) without/with annihilation contributions denoted as $\mathrm{BR}^{\mathrm{wo}} / \mathrm{BR}^{\mathrm{w}}$.

References

[1] Heavy Flavor Averaging Group, http://www.slac.stanford.edu/xorg/hfag/.
[2] P. K. Das and K. C. Yang, Phys. Rev. D 71 (2005) 094002 [arXiv:hep-ph/0412313].
[3] K. C. Yang, Phys. Rev. D 72 (2005) 034009 [arXiv:hep-ph/0506040].
[4] A. L. Kagan, Phys. Lett. B 601 (2004) 151 [arXiv:hep-ph/0405134].
[5] M. Beneke et al., Nucl. Phys. B 606 (2001) 245 [arXiv:hep-ph/0104110].
[6] K. C. Yang, in preparation.

[^0]: *Speaker.
 ${ }^{\dagger}$ This work was supported in part by the National Science Council of R.O.C. under Grant No: NSC94-2112-M-033-001.

