

Constraints on ϕ_2 (α) from $B \rightarrow \rho \rho$ Decays at Belle

Alexander Somov*†

University of Cincinnati, USA E-mail: somov@bmail.kek.jp

We present a time dependent analysis of CP violation in $B^0 \to \rho^+ \rho^-$ decays based on a data sample containing 275 million $B\bar{B}$ pairs collected at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy e^+e^- collider. We measure the branching fraction $B = \begin{bmatrix} 22.8 \pm 3.8 \, (\text{stat}) \, ^{+2.3}_{-2.4} \, (\text{syst}) \end{bmatrix} \times 10^{-6}$, longitudinal polarization fraction $f_L = 0.951 \, ^{+0.033}_{-0.039} \, (\text{stat}) \, ^{+0.029}_{-0.031} \, (\text{syst})$, and the CP violating parameters $A = 0.00 \pm 0.30 \, (\text{stat}) \, ^{+0.10}_{-0.09} \, (\text{syst})$, and $S = 0.08 \pm 0.42 \, (\text{stat}) \pm 0.08 \, (\text{syst})$. These values are used to determine the CKM phase angle ϕ_2 via an isospin analysis; the central value and 1σ error are $(88 \pm 17)^\circ$, and $59^\circ < \phi_2 < 115^\circ$ at 90% CL.

International Europhysics Conference on High Energy Physics July 21st - 27th 2005 Lisboa, Portugal

^{*}Speaker.

[†]For the Belle Collaboration

1. Introduction

The angle ϕ_2 can be determined using a time dependent analysis in charmless decays such as $B^0 \to \pi^+\pi^-$, $B^0 \to \rho^+\pi^-$ and $B^0 \to \rho^+\rho^-$. Due to the small branching fraction for $B^0 \to \rho^0\rho^0$ [1], the penguin contribution in $B^0 \to \rho\rho$ decays is expected to be small. It allows to determine the CKM angle ϕ_2 using $B^0 \to \rho^+\rho^-$ decays with relatively little theoretical uncertainty. Extraction of ϕ_2 requires the knowledge of the polarization of the ρ mesons. The longitudinal polarization corresponds to CP-even state, while two transverse polarizations correspond to an admixture of CP-even and CP-odd states.

Here we present the measurements of the branching fraction, polarization, and a time dependent analysis of $B^0 \to \rho^+ \rho^-$ decays. Using an isospin analysis we determine the CKM angle ϕ_2 .

2. Analysis overview

To identify $\rho^\pm \to \pi^\pm \pi^0$ decays, we require that $m_{\pi^\pm \pi^0}$ be in the range 0.62– $0.92~{\rm GeV}/c^2$. Neutral pion candidates are reconstructed from photon pairs with invariant masses in the range $0.1178~{\rm GeV}/c^2 < M_{\gamma\gamma} < 0.1502~{\rm GeV}/c^2$. π^0 candidates are required to have $p > 0.35~{\rm GeV}/c$ in the e^+e^- center-of-mass (CM) frame. Photon candidates must have a minimum energy of 50 MeV in the barrel region of the electromagnetic calorimeter and 90 MeV in the endcap regions. We require that each ρ candidate satisfy $-0.80 < \cos\theta < 0.98$, where θ is the angle between the direction of the π^0 and the negative of the B^0 momentum in the ρ^\pm rest frame.

B meson candidates are identified using two kinematic variables: the beam energy constrained mass $M_{bc} \equiv \sqrt{E_{beam}^2 - p_B^2}$, and the energy difference $\Delta E \equiv E_B - E_{beam}$, where E_{beam} is the center-of-mass (CM) beam energy, and E_B and p_B are the reconstructed energy and momentum of the B candidate in the CM frame. We accept events in the region $M_{bc} > 5.21\,\mathrm{GeV}/c^2$ and $-0.2\,\mathrm{GeV} < \Delta E < 0.3\,\mathrm{GeV}$ and define a signal region as $M_{bc} > 5.27\,\mathrm{GeV}/c^2$ and $-0.12\,\mathrm{GeV} < \Delta E < 0.08\,\mathrm{GeV}$.

The *b*-flavor tagging information is represented by two parameters, $q=\pm 1$, the flavor, and a quality factor r that ranges from r=0 for no flavor discriminant to r=1 for unambiguous flavor assignment. The dominant background to $B^0\to \rho^+\rho^-$ is $e^+e^-\to q\overline{q}$ (q=u,d,s,c) continuum events. To discriminate the signal from the background we combine a Fisher discriminant[2] based on 16 modified Fox-Wolfram moments with the cosine of the angle between the flight direction of the B in the CM frame and the electron beam direction to form the likelihood ratio $R=L_{B\overline{B}}/L_{B\overline{B}}+L_{q\overline{q}}$. As the tagging parameter r also discriminates against q^-q background, we divide the data into six r intervals (denoted by $\ell=1-6$) and apply the R threshold separately for each. The R requirement removes about 97% of continuum events while retaining about 62% of signal.

3. Measurement of the branching fraction and polarization fraction

We determine the signal yield in two steps: we first fit the $M_{\rm bc}-\Delta E$ distribution to obtain the fraction of $B^0\to \rho^+\rho^-+B^0\to \rho^\pm\pi^\mp\pi^0$ non-resonant decays; we then fit the $m_{\pi^\pm\pi^0}$ distribution to determine the non-resonant fraction and hence the $\rho^+\rho^-$ signal yield.

The first fit is an unbinned maximum likelihood (ML) fit to the two-dimensional $M_{\rm bc}-\Delta E$ distribution in the range 5.21 GeV/ c^2 < $M_{\rm bc}$ < 5.29 GeV/ c^2 and -0.20 GeV < ΔE < 0.30 GeV. The

data sample contains 7120 events: the signal, continuum events ($\sim 83\%$), $b \rightarrow c$ decays ($\sim 12\%$), and $b \rightarrow u$ decays. The PDFs for signal and $b \rightarrow u$ background are modeled by smoothed two-dimensional histograms obtained from MC samples. The PDF for $b \rightarrow c$ background is the product of a threshold ("ARGUS" [3]) function for $M_{\rm bc}$ and a quadratic polynomial for ΔE , also obtained from MC simulation. The PDF for continuum background is an ARGUS function for $M_{\rm bc}$ and a linear function for ΔE ; the slope of the linear function depends on the tag quality (r) bin ℓ . The $b \rightarrow u$ background is dominated by $B^{(0,+)} \rightarrow \rho \pi$, $B \rightarrow a_1 \pi$, and $B \rightarrow a_1 \rho$ decays. For $B^+ \rightarrow a_1^+ \pi^0$ and $B \rightarrow a_1 \rho$ we use the branching fractions 3×10^{-5} and 2×10^{-5} , respectively.

To distinguish $B^0 \to \rho^+ \rho^-$ decays from non-resonant $B^0 \to \rho^\pm \pi^\mp \pi^0$ and $B^0 \to \pi^+ \pi^0 \pi^- \pi^0$ decays, we do an unbinned ML fit to the $\pi^\pm \pi^0$ mass distribution. We select candidates from a $M_{\rm bc} - \Delta E$ signal region and fit the $m_{\pi^\pm \pi^0}$ distribution in the range 0.3–1.8 GeV/ c^2 . Only one ρ candidate is required to satisfy 0.62 GeV/ $c^2 < m_{\pi^\pm \pi^0} < 0.92$ GeV/ c^2 ; the mass of the other ρ candidate is then fit. The PDFs for signal and non-resonant $B \to \rho \pi \pi$ components are obtained from MC simulation. The PDFs for continuum and $b \to c$ backgrounds are grouped together and taken from the data sideband. We impose the constraint that the fraction of signal + non-resonant events in the $m_{\pi^\pm \pi^0}$ range 0.62–0.92 GeV/ c^2 equals that which we obtained from the $M_{\rm bc} - \Delta E$ fit.

The main systematic uncertainties come from track reconstruction efficiency, π^0 reconstruction efficiency, the π^\pm identification efficiency, the continuum suppression requirement, the $M_{\rm bc}$ – ΔE shapes for $B^0 \to \rho^+ \rho^-$ and $b \to c$ background, and the fraction of $b \to u$ background. The final result for the branching fraction is

$$B(B^0 \to \rho^+ \rho^-) = \left[22.8 \pm 3.8 \text{ (stat)} \right]_{-2.4}^{+2.3} \text{ (syst)} \times 10^{-6}.$$
 (3.1)

The polarization of $B^0 \to \rho^+ \rho^-$ decays is obtained from an unbinned ML fit to the helicity angle distribution $F(\cos\theta_1,\cos\theta_2)$, where $\theta_{1,2}$ is the angle between the π^0 momentum and the direction opposite the B^0 in the ρ rest frame. For a longitudinal polarization fraction f_L , this distribution is $\frac{9}{4} \left[f_L \cos^2\theta_1 \cos^2\theta_2 + \frac{1}{4} (1-f_L) \sin^2\theta_1 \sin^2\theta_2 \right]$. This PDF is multiplied by a two-dimensional acceptance function $A(\cos\theta_1) \cdot A(\cos\theta_2)$ determined from MC simulation. The PDF for non-resonant decays is taken to be constant, the PDF for $b \to u$ background is taken from MC simulation, and the PDFs for continuum and $b \to c$ backgrounds are combined and determined from the data sideband. The fraction of signal + non-resonant decays is taken from the previous $M_{bc} - \Delta E$ fit; the component $f_{\rho\pi\pi}$ is taken from the previous $m_{\pi^\pm\pi^0}$ fit. The small fraction of $b \to u$ background is fixed according to MC simulation. A fit to 656 candidates in the signal region yields

$$f_L = 0.951^{+0.033}_{-0.039} (\text{stat})^{+0.029}_{-0.031} (\text{syst}).$$
 (3.2)

The systematic errors include the uncertainties in the signal + non-resonant and non-resonant fractions, acceptance, misreconstructed $B^0 \to \rho^+ \rho^-$ decays, the continuum suppression requirement, possible interference with an L = 0 $\pi^\pm \pi^0$ system produced in non-resonant $\rho^\pm \pi^\mp \pi^0$ decays, and uncertainty in the continuum $+(b \to c)$ background shape. The obtained branching fraction and f_L are consistent with previously published measurements[4].

4. Measurement of the CP-violating parameters and constraint on ϕ_2

The CP parameters A and S are obtained from an unbinned ML fit to the Δt distribution. The

likelihood function for event i is

$$L_{i} = f_{\rho\rho}^{(i)} P_{\rho\rho} + f_{\text{SCF}}^{(i)} P_{\text{SCF}} + f_{\rho\pi\pi}^{(i)} P_{\rho\pi\pi} + f_{b\rightarrow c}^{(i)} P_{b\rightarrow c} + f_{b\rightarrow u}^{(i)} P_{b\rightarrow u} + f_{q\bar{\ q}}^{(i)} P_{q\bar{\ q}}$$

where $f^{(i)}$ is the fraction of events determined on an event-by-event basis as a function of the $M_{\rm bc}$ and ΔE for each flavor tagging r interval. The PDFs $P(\Delta t)$ for $b\to c$ and $b\to u$ backgrounds are determined from MC simulation, and the PDF for continuum q^-q background is determined from a $M_{\rm bc}$ sideband. We include an additional PDF for SCF background in which a π^\pm daughter is swapped with a track from the rest of the event; this function is determined from MC simulation and is found to be exponential with an effective lifetime of about 1 ps. $f_{\rm SCF}$ is also determined from MC simulation; its normalization is 5.7% of all $\rho^+\rho^-$ candidates. The PDF $P_{\rho\rho}(\Delta t)$ is given by

$$\int_{-\infty}^{+\infty} \frac{e^{-|\Delta t'|/\tau_{B^0}}}{4\tau_{B^0}} \left\{ 1 - q\Delta\omega_{\ell(i)} + q(1 - 2\omega_{\ell(i)}) \left[A\cos(\Delta m\Delta t') + S\sin(\Delta m\Delta t') \right] \right\} R(\Delta t^{(i)}, \Delta t') d\Delta t',$$

where $R(\Delta t, \Delta t')$ is a resolution function determined from data, ω_ℓ is the mistag probability for the ℓ th bin of the tagging parameter r, and $\Delta \omega_\ell$ is a possible difference in ω_ℓ between q=+1 and q=-1 tags. The PDF $P_{\rho\pi\pi}$ is taken to be exponential with $\tau=\tau_B$ and is smeared by the same resolution function R. A fit to the 656 candidates in the signal region yields

$$A = 0.00 \pm 0.30 \text{ (stat)}^{+0.10}_{-0.09} \text{ (syst)}$$

$$S = 0.08 \pm 0.42 \text{ (stat)} \pm 0.08 \text{ (syst)}.$$
(4.1)

These values are consistent with the no-CP-violation case A=S=0, and the errors are consistent with expectations based on MC studies. The systematic errors include the uncertainties in the wrong-tag fractions, component fractions, background asymmetry, fitting bias, vertex reconstruction, Δt resolution function, background Δt PDF, tag-side interference [5], and the systematic error due to the transversity amplitudes A_{\perp} and A_{\parallel} (which may have different values of A and S).

We use these values along with the measured branching fraction for $B^0 \to \rho^+ \rho^-$ and previously-measured branching fractions for $B^+ \to \rho^+ \rho^0$ [6] and $B^0 \to \rho^0 \rho^0$ [1] to constrain the angle ϕ_2 . We use the isospin relations of Ref. [7] (originally applied to the $B \to \pi\pi$ system), neglecting a possible I=1 contribution to the $B^0 \to \rho^+ \rho^-$ amplitude [8]. We obtain a central value and 1σ error $\phi_2=(88\pm17)^\circ$; the 90% CL interval around the central value is $59^\circ < \phi_2 < 115^\circ$.

References

- [1] B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 94, 131801 (2005).
- [2] S. H. Lee et al. (Belle Collaboration), Phys. Rev. Lett. 91, 261801 (2003).
- [3] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 241, 278 (1990).
- [4] B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 93, 231801 (2004).
- [5] O. Long et al., Phys. Rev. D 68, 034010 (2003).
- [6] S. Eidelman et al. (PDG), Phys. Lett. B **592**, 1 (2004).
- [7] M. Gronau and D. London, Phys. Rev. Lett. 65, 3381 (1990).
- [8] A. Falk et al., Phys. Rev. D 69, 011502(R) (2004).