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Based on the AdS/CFT correspondence we study the breaking of the chiral symmetry in QCD
using a simple five dimensional model. The model gives definite predictions for the spectrum of
vector mesons, their decay constants and interactions as a function of one parameter related to
the quark condensate. We calculate the coefficients Li of the low-energy QCD chiral lagrangian,
as well as other physical quantities for the pions. All the predictions are shown to be in good
agreement with the experimental data. We also show that they are robust under modifications of
the 5D metric in the IR, and that some of them arise as a consequence of the higher-dimensional
gauge symmetry. For example, at the tree-level, we find Mρ '

√
3gρππFπ , Fρ '

√
3Fπ and

BR(a1 → πγ) = 0.
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1. Introduction

The string/gauge duality [1] has allowed us in the last years to gain new insights into the
problem of strongly coupled gauge theories. Although a string description of real QCD has not
yet been formulated, different string constructions have been able to describe gauge theories with
certain similarities to QCD, such as confinment and chiral symmetry breaking. The incorporation
of fundamental quarks as D7-branes in the AdS5×S5 background [2] has allowed to address flavor
issues (see references in [3]). A more phenomenological approach to QCD consists in using 5D
field theories in Anti-de-Sitter (AdS). This is a more modest attempt but, in certain regimes, it
grasps the generic features of the more involved string constructions.

We propose a simple model to study chiral symmetry breaking [3] in the vector and axial-
vector sector of QCD (the same model was proposed in [4]). It is known from the OPE that the
vector-vector current correlator for large Euclidean momentum, p � ΛQCD, is given in the chiral
limit by [5]

ΠV (p2) = p2
[

β ln µ2

p2 +
γ
p4 +

δ
p6 + · · ·

]

, (1.1)

where β 'Nc/(12π2), γ 'αs〈G2
µν〉/12π and δ '−28παs〈q̄q〉2/9 are almost momentum-independent

coefficients. Similar expression holds for the axial-axial correlator ΠA. Therefore QCD behaves in
Eq. (1.1) as a near-conformal theory in the ultraviolet (UV) in which the breaking of the conformal
symmetry is given by the condensates. The correlator ΠV , on the other hand, must have, according
to the large-Nc expansion, single poles in the imaginary axis of p corresponding to colorless vector
resonances. These properties of QCD can be implemented in a 5D theory in AdS. The conden-
sates 〈O〉 are described, in the AdS side, by vacuum expectation values (VEV) of scalars Φ whose
masses are related to the dimension d of O by [6] d =

√

4+M2
ΦL2 +2 (L is the AdS curvature ra-

dius), while confinement and the mass gap in QCD can be obtained in the AdS5 by compactifying
the fifth dimension. Alike large-Nc QCD, the 5D theory is also described as a function of weakly
coupled states corresponding to the mesons.

2. A 5D model for chiral symmetry breaking

The 5D analog of QCD with 3 flavors consists in a theory with a SU(3)L⊗SU(3)R gauge sym-
metry in the 5D bulk, a parity defined as the interchange L↔ R and a scalar field Φ transforming as
a (3L,3̄R) whose VEV will be responsible for the breaking of the chiral symmetry. The 5D metric
is defined generically as ds2 = a2(z)

(

ηµνdxµ dxν −dz2), where a is the warp factor. We will work
within AdS5, then the warp factor is given by a(z) = L/z, where L is the AdS curvature radius. We
will compactify this space by putting two boundaries, one at z = L0 (UV-boundary) and another at
z = L1 (IR-boundary). The UV-boundary acts as a regulator necessary to obtain finite calculations.
The limit L0 → 0 should be taken after divergencies are canceled by adding counterterms on the
UV boundary [6]. The IR-boundary is needed to introduce a mass gap in the theory ∼ 1/L1 to be
related to ΛQCD, and it breaks the conformal symmetry.

The action is given by

S5 = M5

∫

d4x
∫

dz
√

gTr

[

−1
4

LMNLMN − 1
4

RMNRMN +
1
2
|DMΦ|2 − 1

2
M2

Φ|Φ|2
]

, (2.1)
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where DMΦ = ∂MΦ+ iLMΦ− iΦRM , LM = La
MT a and Tr[T aT b] = δab, and similarly for the other

fields. A coefficient M5 has been factored out in front of the lagrangian so that 1/
√

M5 is the 5D
expansion parameter playing the role of 1/

√
Nc in QCD. We define Φ = SeiP/v(z) where v(z) ≡ 〈S〉.

We assume M2
Φ = −3/L2 that corresponds in the CFT to an operator of dimension 3 such

as q̄q. Solving the bulk equation of motion for S we get v(z) = c1 z + c2 z3 , where c1 and c2
are two integration constants. They can be determined as a function of the value of v(z) at the
boundaries: Mq ≡ Lv/z

∣

∣

L0
and ξ ≡ Lv

∣

∣

L1
. By the AdS/CFT correspondence, a nonzero Mq is

equivalent to put an explicit breaking of the chiral symmetry in the CFT (such as adding quark
masses). A nonzero value of ξ ∝ I corresponds in the chiral limit to an spontaneously breaking
SU(3)L⊗ SU(3)R →SU(3)V , playing the role of the condensate 〈q̄q〉 in QCD, as can be found by
computing the variation of the vacuum energy with respect to Mq. We will take ξ → ξ I where ξ
will be considered an input parameter. Therefore the vector sector of the model has 4 parameters,
M5, Mq, L1, and ξ . The model then has, with respect to QCD, only one extra parameter, ξ .

Few comments: (1) Using naive dimensional analysis one can estimate that this 5D theory be-
comes strongly coupled at a scale ∼ 24π 3M5. This implies that extra (stringy) physics must appear
at this scale or, equivalently, that this is the scale that suppresses higher dimensional operators in
Eq. (2.1). We estimate this scale to be around few GeV. (2) We are neglecting the backreaction on
the metric due to the presence of the scalar VEV. Although a nonzero energy-momentum tensor
of Φ will affect the geometry of the space producing a departure from AdS, this effect will only
be relevant at z very close to the IR-boundary, and therefore it will not substantially change our
results. Notice that neglecting the backreaction corresponds to freeze other possible condensates
that turn on in the presence of the quark condensate. (3) We will not consider the extra U(1)L,R that
involves the anomaly.

2.1 The current-current correlators ΠV,A

In QCD the generating functional of the current-current correlators is calculated by integrating
out the quarks and gluons as a function of the external sources. This must be equivalent in the large-
Nc limit to integrate all the colorless resonances at tree-level. The AdS/CFT correspondence tells
us that this generating functional is the result of integrating out, at tree-level, the 5D gauge fields
restricted to a given UV-boundary value Vµ

∣

∣

L0
= vµ and Aµ

∣

∣

L0
= aµ (with V/A = (L±R)/

√
2).

Then vµ (aµ ) play the role of external source coupled to the vector (axial-vector) QCD current.
The two-point correlator ΠV can be calculated analytically in terms of Bessel functions. For

large Euclidean momentum, pL1 � 1, the dependence on p of the correlators is dictated by the
conformal symmetry and we find ΠV (p2) '−M5L p2 ln(pL0). Matching the coefficient M5L to the
QCD β -function of Eq. (1.1). We get

M5L =
Nc

12π2 ≡ Ñc , (2.2)

that fixes the value of the 5D coupling. The correlator ΠA depends on the z-dependent mass of Aµ

and can be calculated analytically only in the large and small momentum limits. For ξ � 1 the
dependence of ΠA on ξ is simply dictated by the conformal symmetry. For small p, we have

ΠA(p2) = F2
π +O(p2) , where Fπ ' 87

(

ξ
4

)
1
3

MeV , (2.3)
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in excellent agreement with the experimental value for ξ ' 4. For large p and in the chiral limit
the left-right correlator ΠLR = ΠV −ΠA is given by

ΠLR(p2) ' c6
p4 + · · · , where c6 = −16

5
Ñc ξ 2

L6
1

'−1.4×10−3
(

ξ
4

)2
GeV6 , (2.4)

to be compared with the QCD value c6 = −4παs〈q̄q〉2 '−1.3×10−3 GeV6.
In large-Nc theories the correlators ΠV,A can be rewritten as a sum over narrow resonances:

ΠV = p2 ∑
n

F2
Vn

p2 +M2
Vn

, ΠA = p2 ∑
n

F2
An

p2 +M2
An

+F2
π . (2.5)

FVn and FAn are the vector and axial-vector decay constants. The poles of ΠV,A give the mass
spectrum. The correlators ΠV,A calculated via the AdS/CFT correspondence can also be rewritten
as in Eq. (2.5). For the vector n = 1 resonance, the rho meson, we have Mρ ' 2.4/L1 that we will
use to determine the value of L1 ' 1/320 MeV−1. Then we obtain FV1 ' 140 MeV. For ξ ' 4 we
obtain MA1 ' 1230 MeV, that coincides with the mass of a1, and FA1 ' 160 MeV.

2.2 Vector meson interactions

The interactions between the different resonances are easily obtained integrating the 5D inter-
actions over z with the corresponding wave-functions. The 5D gauge invariance of the model leads
to interesting sum rules among the couplings and masses of the resonances from which we obtain
M2

ρ ' 3g2
ρππ F2

π , Fρ '
√

3Fπ , and the vanishing of the BR of a1 into πγ at the tree-level. Another
prediction of the model is the realization of vector meson dominance in the electromagnetic form
factor of the pion.

3. The chiral lagrangian for the PGB

By integrating all the heavy resonances we can obtain the effective lagrangian for the PGB.
This lagrangian is fixed by the chiral symmetry up to some unknown coefficients. Here we give the
prediction of our model for these coefficients.

L1 L2 L3 L4 L5 L9 L10
Exp. 0.4±0.3 1.4±0.3 −3.5±1.1 −0.3±0.5 1.4±0.5 6.9±0.7 −5.5±0.7
AdS5 0.4 0.9 −2.6 0.0 1.7 5.4 −5.5

Table 1: Experimental values of the Li at the scale Mρ in units of 10−3 [7] and the predictions of the AdS5
model for the value ξ = 4. The coefficients L4,6 are zero at the tree-level (leading order in the large-Nc

expansion), while L7,8 will be left for the future (L7 involves the U(1) anomaly and L8 receives contributions
from the scalar sector).

We also can calculate the electromagnetic pion mass difference in the chiral limit for ξ = 4(5)

we find ∆mπ ' 3.6(4) MeV to be compared with the experimental value ∆mπ ' 4.6 MeV.
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4. Conclusions

We have presented a 5D model that describes some of the properties of QCD related to chiral
symmetry breaking. Alike large-Nc QCD, this model is defined by a set of infinite weakly coupled
resonances. The model depends only on one parameter, ξ , related to the quark condensate (apart
from the other 3 parameters of the model that are fixed by the 3 parameters that define QCD: the
mass gap ΛQCD, Mq, and Nc). A summary of some of the results is given in Table 1 and Fig. 1 that
shows that, within a 30%, they agree with the data.
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Figure 1: Predictions of the model for some physical quantities as a function of ξ divided by their experi-
mental value. We have taken Mq = 0.

Since the results presented here depend on the AdS5 metric, one can wonder whether the
results are robust under possible deviations from AdS. If we want the theory to be almost conformal
in the UV, the warp factor for z � L1 (where 1/L1 gives the mass gap) must behave as

a(z) ' L
z

[

1+∑
i

ci

(

z
L1

)di
]

, (4.1)

where ci are numerical constants related to the singlet condensates 〈Oi〉 and di = Dim[Oi]. In QCD
di ≥ 4. Eq. (4.1) implies that only for values of z quite close to L1 the metric will deviate from
AdS. Therefore, unless the coefficients ci are very large, we do not expect large deviations from
our results. The ci, however, are restricted by the curvature of the space R. We have checked that
for R ∼ 1/L2

1, our results are not substantially modified by deformations of the metric in the IR.
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