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1. Introduction

It is now a well established fact that at zero temperaturesaffiiciently high densities quark
matter is a color superconductor [1, 2] (see also Alford aisglike contributions at this workshop).
The study starting from first principles was done in [3, 4, Al.chemical potentials much higher
than the masses of the quanksd ands, the favored state is the so-called Color-Flavor-Locking
(CFL) state, whereas at lower values the strange quark peeand the relevant phase is called
two-flavor color superconducting (2SC).

An interesting possibility is that in the interior of compatellar objects (CSO) some color
superconducting phase might exist. In fact we recall thactntral densities for these stars could
be up to 18° g/cm?, whereas the temperature is of the order of tens of keV. Hewthe usual
assumptions leading to prove that for three flavors the &etate is CFL should now be reviewed.
Matter inside a CSO should be electrically neutral and shaot carry any color. Also conditions
for B-equilibrium should be fulfilled. As far as color is concetné is possible to impose a simpler
condition, that is color neutrality, since in [6] it has bedtown that there is no free energy cost in
projecting color singlet states out of color neutral stafegthermore one has to take into account
that at the interesting densities the mass of the strang& gpua relevant parameter. All these three
effects:

1. mass of the strange quark,
2. B-equilibrium,

3. color and electric neutrality
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imply that the radii of the Fermi spheres of the quarks thaila/pair are not of the same size, thus
creating a problem with the usual BCS pairing. Let us starnfthe first point. Suppose to have
two fermions of masse®s; = M andm, = 0 at the same chemical potentjal The corresponding

Fermi momenta are
PR, =V H2—M2, pg, = p. (1.1)

Therefore the radius of the Fermi sphere of the massive ernsi smaller than the one of the
massless particle. If we assuile< i the massive particle has an effective chemical potential

MZ
eft = /U2 — M2~ U — —— 1.2)

2u’
and the mismatch between the two Fermi spheres is

MZ

<o (1.3)

ou

This shows that the quantityl?/(2u) behaves as a chemical potential. ThereforeMog
the mass effects can be taken into account through the inttioth of the mismatch between the
chemical potentials of the two fermions given by eq. (1.3isTis the way we will follow in our
study.

Now let us discuss th@-equilibrium. If electrons are present (as generally resliby electri-
cal neutrality) chemical potentials of quarks of differefgctric charge are different. In fact, when
at the equilibrium for the process— uev we have

Hd — Hu = He. (1.4)

From this condition we get that for a quark of chafgehe chemical potentigl; is given by

Hi = p+ Qilg, (1.5)

wherellg is the chemical potential associated to the electric chargerefore

He = —HqQ- (1.6)

Notice also thall is not a free parameter since it is determined by the newyti@indition

Q= e 0. 1.7)
At the same time the chemical potentials associated to fbe generatord; andTg are determined
by the color neutrality conditions

%@ _o0

dus  dug

We see that the general there is a mismatch between the ghatkshould pair according to

the BCS mechanism fa¥u = 0. Therefore, in general, the system will go to a normal phsisee
the mismatch, as we shall see, tends to destroy the BCSgpairiia different phase will be formed.
In the next Sections we will explore some of these possibises.

(1.8)
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2. Pairing Fermions with Different Fermi Momenta

In order to discuss the pairing of fermions with differentfiémomenta let us review the gap
equation for the BCS condensate. The condensation phemoniethe key feature of a degenerate
Fermi gas with attractive interactions. Once one takesactmunt the condensation the physics
can be described using the Landau’s idea of quasi-partidieghis context quasi-particles are
nothing but fermionic excitations around the Fermi surfdescribed by the following dispersion

relation
£(B,00) = 1/ E2+ D3, (2.2)
with
E=E@-u~ TR (PP = (5 ) 22)

and A the BCS condensate. The quantitigsand (p— pr) are called the Fermi velocity and
the residual momentum respectively. A easy way to undeddta the concept of quasi-particles
comes about in this context is to study the gap equation & fiemperature. For simplicity let us
consider the case of a four-fermi interaction. The euclidgap equation is given by

_ 2.3
| g =

From this expression it is easy to get the gap equation at tieihperature. We need only to convert
the integral oveip, into a sum over the Matsubara frequencies

1
- gT/ n—_w ((2n+1)7iT)2+ €2(B, o) (2.4)

Performing the sum we get
d®p 1—ny—
2 (2m)3 (P, AO) '
Heren, andng are the finite-temperature distribution functions for tReitions (quasi-particles)
corresponding to the original pairing fermions

(2.5)

1
At zero temperaturen, = ng — 0) we find (restricting the integration to a shell around tleenki
surface)
Q
z/d pdef t 2.7)
\ &2 +D5
In the limit of weak coupling we get
Do~ 28290 (2.8)
wheref_ is a cutoff and
_ P
P= o (2.9)
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is the density of states at the Fermi surface. This showsdénaieasing the density of the states
the condensate decreases exponentially. From a phenarg@ablpoint of view, one determines
the couplingg requiring that the same four-fermi interaction, at zero gemture and density,
gives rise to a constituent mass of the order of /. From this requirement, using values for
U =~ 400-- 500 MeV (interesting for the physics of compact stellar objectsg obtains values of
A in the range 26-100MeV. However, since at very high density it is possible to uséupeative
QCD, one can evaluate the gap from first principles [3]. Tlsaltds

Ao ~ 2bpe 3T/V2s (2.10)

with
b~ 256 (2/N¢)¥2 g5 (2.11)

Itis interesting to notice that from Nambu-Jona Lasinicetgp models one would expect a behavior
of the type exp—c/g?) rather than exp-c/gs). This is due to an extra infrared singularity from
the gluon propagator. Although this result is strictly datinly at extremely high densities, if
extrapolated down to densities correspondingtte 400+ 500 MeV, one finds agaifyg ~ 20+
100Mev.

We start now our discussion considering a simple model with pairing quarksu andd,
with chemical potentials

Hu= H+OM, Hyg=H—OH, (2.12)

and no further constraints. The gap equation has the sammafexpression as given in eq. (2.5)
for the BCS case, but non # nyg

1
Nud = PRI T 1 (2.13)
In the limit of zero temperature we obtain
(1—6(—e—0u)—6(—e+9du)). (2.19)

2 2n35 rj,

The meaning of the two step functions is that at zero tempesdihere is no pairing whea(p,A) <
|du|. In other words the pairing may happen only for excitationih wositive energy. However,
the presence of negative energy states, as in this caseeintipht there must be gapless modes.
When this happens there are blocking regions in the phase sipet is regions where the pairing
cannot occur. The effect is to inhibit part of the Fermi scefdo the pairing giving rise a to a
smaller condensate with respect to the BCS case where alutfece is used. In the actual case
the gap equation &t = 0 has two different solutions (see for instance ref. [7])

a) A=D0y, b) A%=25ulg— A3, (2.15)

wherel\; is the BCS solution of the gap equation fiyn = 0 The free energy of the two solutions
are given by

8)  Q(8H) = Qo(du) — 2 (2507 +85),

b) Q(éu):Qo(éu)—p( 4512 + 45ubo — A2), (2.16)
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Figure 1: The two solutions of the gap equation with a mismadgh The continuous line is the BCS

solution, the dashed one is called the Sarma solution.
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Figure 2: The spectrum of quasi-particles for different values ofrttismatchd 1.

with Qo(du) the free energy for unpaired fermions. For two masslessiéespr = ¢ andvg =1
andp = u?/m. The two solutions are illustrated in Fig. 1. We see that tetion a) is always

favored with respect to the solution b) (called the SarmaeHh8]). Furthermore the BCS phase
goes to the normal phase at

JA%)
oy = —.

Ha1 NG

This point is called the Chandrasekhar-Clogston (CC) g@indenoted by CC in Fig. 1). Ignoring
for the moment that in this case, after the CC point the sygtees to the normal phase, we notice
that the gaps of the two solutions coincidedat = Ag. This is a special point, since in presence of

(2.17)

005/6



Color Superconductivity in High Density QCD

a mismatch the spectrum of the quasi-particles is modifigdlsvs

Esy—o=\/(P— 1)?>+02— E5, = ‘cmi (p— )% +A42

Therefore forld | < A we have gapped quasi-particles with gApsdu (see Fig. 2). However, for
|ou| = A a gapless mode appears and from this point on there are sagfitime phase space which
do not contribute to the gap equation (blocking regionsk gapless modes are characterized by

E(p)=0=p=p++/du?—»12 (2.19)

Since the energy cost for pairing two fermions belonging eonfi spheres with mismatohu is
20u and the energy gained in pairing iA,2ve see that the fermions begin to unpair for

. (2.18)

26 > 2A. (2.20)

These considerations will be relevant for the study of thess phases when neutrality is required.

3. The g2SC Phase
The g2SC phase [10] has the same condensate as the 2SC
OlgS b 10y =nelP3 a,Be(3), abeV(Q2), (3.1)

and technically, it is distinguished by 2SC due to the presearf gapless modes startingdat = A.

In this case only two massless flavors are present (queasksid) and there are 2 quarks ungapped
Oub, ddb @nd 4 gappedyyr, Oug, ddr, Odg, Where the color indices, 2,3 have been identified with
r,g,b (red, green and blue). The difference with the usual 2SCeplsathat color and electrical

neutrality are required:
0Q 09Q 0Q _0

FITRR TR T (3.2)
This creates a mismatch between the two Fermi spheres giwven b
5u:p%’—p‘é:ud—uu:&_ (3.3)
2 2 2
Furthermore the gap equation must be satisfied
0Q
A" 0. (3.4)

The solutions to these equations are plotted in the plape)) in Fig. 3. In this figure we
see the two branches of solutions of the gap equation camespy to the BCS phase and to
the Sarma phase (compare with Fig. 1). Therefore the soltitidhe present problem belongs
to the Sarma branch. In [10] it is also shown that the soluisoa minimum of the free energy
following the neutrality line. On the other hand this poisti maximum following the appropriate
line ue = const. We see that the neutrality conditions promote the unstpb#ese (Sarma) to a
stable one. However this phase has an instability conndotéite Meissner mass of the gluons
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Figure 3: The plane(ue,A) showing the lines of the solutions of the gap equation (camtiis) and to the
neutrality condition (dashed). The common solution is redrly a black dot.

[11]. In this phase the color grou:(3) is spontaneously broken &J¢(2) with 5 of the 8 gluons
acquiring a mass; precisely the gluons 4,5,6,7,8. At thatphjit = A where the 2SC phase goes
into the g2SC one, all the massive gluons have imaginary .nfasshermore the gluons 4,5,6,7
have imaginary mass already startingdat= A/+/2, that is at the Chandrasekhar-Clogston point,
see Fig. 4. This shows that both the g2SC and the 2SC phasesstable. The instability of the
g2SC phase seems to be a general feature of the phases wibgyaqodes [12].

0.4 | T
0.2 |

-0.2¢ A\

\
-04 ¢ |
06} |

Figure 4: Plot of m§, /mg vs. A/du. Heremg = u?g?/(3m?). The long-dashed line corresponds to the
gluons 4,5,6,7, whereas the short-dashed one to the gluon 8.
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4. The gCFL phase

The gCFL phase is a generalization of the CFL phase which éas studied both &t = 0
[13, 14] andT # 0 [15]. The condensate has now the following form

(O|¢S WE 10) = A167P egy + Doe®F ey + N3 Poeaps. (4.1)

The CFL phase corresponds to all the three gggseing equal. Varying the gaps one gets many
different phases. In particular we will be interested to CteLg2SC characterized lys # 0 and

A, = Ay = 0 and to the gCFL phase withs > A, > A;. Notice that, in the actual context, the
strange quark is present also in the g2SC phase but unpainednatrix of the condensates in the
color (r,g,b) and flavor (1,d, s) space is given below:

rugdbs rd gu rs bu gs bd
ru Az Ay
gd|Az A
bs Ny N
rd —As 4.2)
gu —A3
rs A
bu AV
gs AV
bd -
In flavor space the gags correspond to the following pairings
A =ds, A= us, Az=ud. 4.3)

The mass of the strange quark is taken into account by gip#firthe chemical potentials involving

the strange quark as follows:
2

Has — Has — 2—; (4.4)

It has also been shown in ref. [16] that color and electridnadity in CFL require

2

usz—z—lj, Pe =tz =0. (4.5)

At the same time the various mismatches are given by

M2 MZ
Olpd—gs = ﬁ’ Ofrd—qu=He =0, Oprs bu=He— ﬂ (4.6)

It turns out that in the gCFL the electron density is différsom zero and, as a consequence, the
mismatch between the quartgndsis the first one to give rise to the unpairing of the correspgni
quarks. This unpairing is expected to occur for

M2 M2
225 SN = —S S 2A 4.7)
2u u

005/9



Color Superconductivity in High Density QCD

307, T T T T "'A;
% 25 \'/"/ -----------
z | ({\_\ \\\\\
2 20} \ \\\\\\\\\\ AZ
% | \\ N
% 15+ \\ \\
= | \
5_5 10} AN
o | \\
5] AN
O 51 DZA \\\\ Al
0 7‘ P N S P R ‘\f‘i
0 25 50 75 100 125 150
M /U [MeV]

Figure 5: The behavior of the gap parameters in gCFL. The parametsiisden chosen in such a way that
Do = 25MeV andu = 500MeV [14]. The vertical line aM2/u ~ 130MeV marks the transition from the

gCFL phase to the normal one.
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Figure 6: We give here the free energy of the various phases with mder the normal phase [14], named

unpaired in the figure.

This has been substantiated by the calculations in a NJL imoaldeled on one gluon-exchange in
[14]. The results for the gaps are given in Fig. 5. We see ti@atransition from the CFL phase,
where all gaps are equal, to the gapless phase occurs roaighif/ u = 2A. In Fig. 6 we show
the free energy of the various phases with reference to thealgphase. The CFL phase is the
stable one up td12/u ~ 2A. Then the gCFL phase takes over up to about @Y where the
system goes to the normal phase. Notice that except in a wgryegion around this point, the
CFL and gCFL phases win over the corresponding 2SC and g28€& odrhe thin short-dashed
line represents the free energy of the CFL phase up to the pdiare it becomes equal to the
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free-energy of the normal phase. This happensvigfu ~ 4A. This point is the analogue of the
Chandrasekhar-Clogston point of the two-flavor case.

The gCFL phase has gapless excitations and, as a consegtend@romomagnetic instability
discussed in the case of the g2SC phase shows up here tochabhieen shown in [17, 18]. The
results of ref. [17] are given in Fig. 7 for the various gluoasses.

2
MM m(M)
2 - ] 1.25
() 0 3 my(0) 1 6,7
-1 1,2 0.75 "
-2 0.5 '
3 8 O.Zg
'4 Mo 02 ANV
0O 20 40 60 80 100120 M 0 20 40 60 80 100 120 p

Figure 7: The figure shows, for the gCFL case, the masses of the glu@r B, (left panel) and 4,5,6,7
(right panel) vsM2/ .

The existence of the chromomagnetic instability is a serjpwblem for the gapless phases
(92SC and gCFL) but also for the 2SC phase, as we have discpeséously. A way out of this
problem would be to have gluon condensation. For instafiase assumes artificiaIIYAﬁ> and
(Aﬁ> not zero and with a value of about MeV it can be shown that the instability disappears [17].
Also, very recently in [19], it has been shown the possipitif eliminating the chromomagnetic
instability in the 2SC phase through a gluonic phase. Howigve not clear if the same method
can be extended to the gapless phases.

Another interesting possibility has been considered irghpapers by Giannakis and Ren,
who have considered the LOFF phase, that is a nonhomogepbass first studied in a condensed
matter context [20, 21] and then in QCD in [22, 23] (for recestiews of the LOFF phase, see
[7, 24]). The results obtained by Giannakis and Ren in theftaxmr case are the following:

e The presence of the chromomagnetic instability in g2SC é&tiyx what one needs in order
that the LOFF phase is energetically favored [25].

e The LOFF phase in the two-flavor case has no chromomagnstigbifities (though it has
gapless modes) at least in the weak coupling limit [26, 27].

Of course these results make the LOFF phase a natural cendiidahe stable phase of QCD at
moderate densities. In the next Sections we will describeLtBFF phase in its simplest version
and a very simple approach to the problem with three flavors.

5. The LOFF Phase

According to the authors of refs. [20, 21] when fermions hglto different Fermi spheres,
they might prefer to pair staying as much as possible cloffecio own Fermi surface. When they
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Figure 8: Pairing of fermions belonging to two Fermi spheres of déferradii according to LOFF.

are sitting exactly at the surface, the pairing is as showfign8. We see that the total momentum
of the pair isp; + P2 = 24 and, as we shall shoyg| is fixed variationally whereas the direction of
g is chosen spontaneously. Since the total momentum of théspaot zero the condensate breaks
rotational and translational invariance. The simplestifaf the condensate compatible with this
breaking is just a simple plane wave (more complicated pois will be discussed later)

(WHP(x) ~ A", (5.1)

It should also be noticed that the pairs use much less of thmmilsairface than they do in the BCS
case. In fact, in the case considered in Fig. 8 the fermionpaa only if they belong to the circles
in figure. More generally there is a quite large region in motam space (the so called blocking
region) which is excluded from pairing. This leads to a corsd¢e generally smaller than the BCS
one.

Let us now consider in more detail the LOFF phase. For two ifammat different densities
we have an extra term in the hamiltonian which can be writeen a

H = —duos, (5.2)

where, in the original LOFF papers [20, 2&}: is proportional to the magnetic field due to the
impurities, whereas in the actual ca8g = ((1 — 12)/2 and oz is a Pauli matrix acting on the
two fermion space. According to refs. [20, 21] this favore fhrmation of pairs with momenta
Pr=k+d, P»= —k+d. We will discuss in detail the case of a single plane wave ¢se€5.1)).
The interaction term of eq. (5.2) gives rise to a shif€ifisee eq. (2.2)) due both to the non-zero
momentum of the pair and to the different chemical potestial

E=E(p)—u—E(+k+0)—puTou~ETQ, (5.3)

with
p=0u—Ve-0. (5.4)
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Notice that the previous dispersion relations show thegmes of gapless modes at momenta de-
pending on the angle witf. Here we have assumeéqu < u (with yu = (u1 + p2)/2) allowing us
to expancE at the first order i/ u (see Fig. 8).

The gap equation for the present case is obtained simply émpni2.14) via the substitution

5[,( — ﬁ (5-5)

By studying eq. (2.14) one can show that increasing starting from zero, we have first the
BCS phase. Then &@u = o, there is a first order transition to the LOFF phase [20, 224, @n
ou = O > O there is a second order phase transition to the normal pR8s@2]. We start
comparing the grand potential in the BCS phase to the onesindhmal phase. Their difference is
given by
PR
AT12VE
where the first term comes from the energy necessary to thedd@densation, whereas the last
term arises from the grand potential of two free fermionshwdifferent chemical potential. We
recall also that for massless fermiops = 4 andve = 1. We have again assumég: < u. This
implies that there should be a first order phase transitiom fthe BCS to the normal phase at
du = Do/+/2 [9], since the BCS gap does not dependden The situation is represented in Fig.
9. In order to compare with the LOFF phase one can expand the@aation around the point

Qpcs— Qnormal= (A% - 25H2) ) (5.6)

Q Oy By

normal

Q| orr Ou ABCS

BCs .~ B

Figure 9: The grand potential (left panel) and the condensates of €% &1d LOFF phases véu (right
panel).

A = 0 (Ginzburg-Landau expansion) to explore the possibilfta second order phase transition
[20]. The result for the free energy is

QLoFF — Qnormai~ —0.44p (O — 5[-‘2)2- (5.7
At the same time, looking at the minimum gyof the free energy one finds
Qvr = 1.20u. (5.8)

We see that in the window between the intersection of the B@®%ecand the LOFF curve
in Fig. 9 andduy, the LOFF phase is favored. Also at the intersection ther fisst order
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transition between the LOFF and the BCS phase. Furthermimegd i, is very close tadu; the
intersection point is practically given yu;. In Fig. 9 we show, in the right panel, the behaviour
of the condensates. Although the wind@ds, ) ~ (0.707,0.754) A, is rather narrow, there are
indications that, considering the realistic case of QCO,[#& window opens up. Such opening
occurs also for different crystalline structures than ihgls plane wave considered here [23, 30].

6. The LOFF phase with three flavors

In the last Section we would like to illustrate some preliaminresult about the LOFF phase
with three flavors. This problem has been considered in [88fuvarious simplifying hypothesis:

The study has been made in the Ginzburg-Landau approximatio

Only electrical neutrality has been required and the chalpictentials for the color charges
Tz andTg have been put equal to zero (see later).

The mass of the strange quark has been introduced as it wagpdeviously previously for
the gCFL phase.

The study has been restricted to plane waves, assumingltbwifm generalization of the
gCFL case:

3 o
(k) = Z R)eP ey, Ly(X) = 0P (6.1)

The condensate depends on three momenta, meaning thréleslefighe momenta; and
three angles. In [29] only four particular geometries hagerbconsidered: 1) all the mo-
menta parallel pointing upward theaxis, then 2), 3) and 4) are obtained by inverting re-
spectively the momenturj,, g, andds.

Under the previous hypothesis the free energy (with refarémthe normal state) has the expansion

with

S (a
A =2 <7IA'2 P ‘ AZAJ) +0(8°) (6.2)
=1
o (q 5;1)—_4_“2 1- ol log a+ou —}Iogw 63)
HELOM) = =5 2q aq — oL 2 A% )
pz o1
o) =T 75 6.4
PG om) =2 7 gy (6.4)
2 rdn 1
Bi2=— % 65)

47T (201 - N+ Hs— Pa +10%) (202 - N+ s — My +i0%)

and the othefj;, | # J obtained by the exchange

12— 23, s Uy, 12— 13, ps+ Uy (6.6)
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The oy are obtained from

2 1 1 M2
Hu=H—gHe, Ha=H+ZHe, us:u+§ue—2—lj (6.7)
In particular the coefficients oA? are the same as for LOFF with two flavors. Therefore the
minimization with respect to thigj |'s leads to the same result as in eq. (5.8)

|G| =1.261 (6.8)

Then, one has to minimize with respect to the gaps and o order to require electrical neutrality.

It turns out that the configurations 3 and 4 have an extrenmagllgyap. Furthermore foZ2/u
greater than about 8deV the solution gived\; = 0 andA; = As. In this case the configurations
1‘ and 2 have the same free energy. The results for the fragyenad for the gap of this solution
are given in Fig. 10 and 11. In this study, the following cleoaf the parameters has been made:
the BCS gapfp = 25 MeV, and the chemical potential = 500 MeV. The values are the same
discussed previously for gCFL in order to allow for a comgani of the results.

A I,

1

0.8
0.6

0.4

20 40 60 80 100 120 140
M2/ [MeV]

Figure 10: The gap for LOFF with three flavors vaviZ/u. The line corresponds to the most favored
solution, that is to the configurations 1 and 2.

We are now in the position to compare these results with tke obtained in [14] for the gCFL
phase. The comparison is made in Fig. 12. Ignoring the chnomgoetic instabilities of the gapless
phases and of 2SC we see that LOFF takes over with respecifio @GboutM2/u = 128 MeV
and goes over to the normal phase ¥/ ~ 150MeV.

However, since the instability exists it should be curedams way. The results for the LOFF
phase, assuming that also for three flavors the chromoniagnstability does not show up, say
that it could be the LOFF phase to takes over the CFL phaseébttfe transition to gCFL. For
this it is necessary that the window for the LOFF phase gdergad. However, in [30] it has
been show that for structures more general than the plane thewindows may indeed becomes
larger. If define the window for the single plane wave (&g, — dp1)/du, (see the previous
Section) we would get 0.06. The analogous ratio in going foma to three plane waves goes to
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Figure 11: The free energy of the most favored configurations (1 and @%idered for LOFF with three
flavors vs.M2/ .
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Figure 12: Comparison of the free energy of the various phases with @R _phase with three flavors.

about(150— 115)/150 = .23, with a gain of almost a factor 4. On the other hand, in [80js
been shown that considering some of the crystalline strestalready taken in exam in [22], as
the face centered cube or the cube the windows becomes @b82t- 0.707)/1.32 = 0.46 with

a gain of about 7.7 with respect to the single plane wave. eéég¢hgains would be maintained in
going from two to three flavors with the face centered cubecsire, one could expect a gain from
4 to 7.7 with an enlargement of the window between 88 andM&@, which would be enough to
cover the region of gCFL (which is about R0eV).

At last we want to comment about the approximation in negigahe color neutrality con-
dition and assumingiz = pg = 0. In Fig. 13 we show the chemical potentials ps, usfor the
gCFL phase in the left panel, and for the LOFF phase in the right panel. We can make two
observations: first of all, in the region of interest whereAFEddominates over gCFL the behaviour
of e in the two phases is pretty much similar, gmgl pg < Ue for gCFL. This suggests that also
in the LOFF caseus and ug are small. Second and more important the result of [29] shbats
e =~ M2/ (4u) as for the case of 3 color and 3 flavor unpaired quarks [16].aksbe seen from eq.
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Figure 13: The chemical potential for gCFL (left panel) and LOFF (riphnel) vs.MSZ/u.

(6.7) this coreesponds to a symmetrical spli of stedd Fermi surfaces around theFermi sur-
face. Thereforeg, = gz and the gapa, andAz must coincide. At the same time the separation of
thed andssurfaces is the double and therefdrse= 0. The unpaired quarks have ajg9= ug = 0.
Also, from Fig. 10 we see that in our approximations the fitaomsfrom the LOFF to the normal
phase is very close to be continuous. Since we expect alshémical potentials to be continuous
at the transition point very close to the critical point weskl haveus = g = 0 also on the LOFF
side. This means the color neutrality condition shoulgupe- g = 0 in the neighborhood of the
transition. Therefore we expect the determination of thetgd?/u = 150 MeV to be safe. On
the other hand, the requirement of color neutrality couldnge the intersection point with gCFL.
Nevertheless, since the critical point for LOFF is highearttthe one of gCFL, for increasinds
the system must to go into the LOFF phase.
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