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1. Introduction

Deep in the deconfined phase of QCD, with either temperatureT or quark chemical potential
µ much larger than the QCD scaleΛQCD, asymptotic freedom eventually leads to a strong coupling
constantg that is sufficiently small to permit the use of perturbation theory for calculating the
thermodynamics of quarks and gluons under extreme conditions. Indeed, much effort has been
invested in calculating the thermodynamic potential of QCDat high temperature. It is by now
known up to and including orderg6 log(g) [1, 2, 3, 4]. These calculations require resummations
of ordinary perturbation theory to cope with infrared problems, which is done most elegantly and
efficiently by means of effective field theories [5]. Up to andincluding orderg6 log(g) one can
in fact set up an expansion into Feynman diagrams, but this breaks down at the orderg6, which
receives nonperturbative contributions from the chromomagnetostatic sector. However, already
the expansion up to that point suffers from unusually poor convergence properties and a strong
dependence on the renormalization point even at temperatures many orders of magnitude higher
thanΛQCD, which seems to reduce calculations of this kind to a purely academic enterprise. The
perturbative expansion appears to become reliable only forcoupling constants so small that the
thermodynamic potential is anyway very well approximated by the Stefan-Boltzmann result for a
noninteracting plasma.

However, this problem is not specific to QCD at high temperature with its nonperturbative
magnetostatic sector. Similarly poor convergence behaviour appears also in simple scalar field
theory [6], and even in the case of large-N φ4 theory [7], where all interactions can be resummed in
a local thermal mass term. As soon as one starts expanding outin a series of powers and logarithms
of the coupling, the result for the thermodynamic potentialgoes wild, whereas the exact result that
is available for the large-N φ4 theory is completely unspectacular and smooth.

Various techniques have been developed to restore the convergence of the perturbative series.
The more physically (rather than mathematically) motivated ones include “screened perturbation
theory” [8, 9], its generalization to gauge theories (“HTL perturbation theory”) [10, 11, 12, 13], and
the use of 2PI techniques which put the emphasis on a quasiparticle description [14, 15, 16, 17]. In
particular the latter results agree very well with available lattice data down to temperatures about
three times the phase transition temperature so that the range of applicability of weak-coupling re-
sults does not appear to be restricted to uninterestingly high temperatures. Moreover, these results
also agree well in this regime with the perturbative resultsof Ref. [3, 4] to orderg5 or eveng6 log(g)

provided the effective-field-theory parameters used in this approach are not treated strictly pertur-
batively, but are kept in the form in which they appear naturally [18]. The difference this makes
is shown in Fig. 1, where the light-gray band shows the renormalization-scale dependence (a mea-
sure of the theoretical uncertainty) to strictly orderg5, and the medium-gray band shows that of the
unexpanded three-loop result, both compared to the latticeresult of Ref. [19], represented by the
thick dark-gray curve. In the unexpanded three-loop result, the renormalization scale dependence
is highly nonlinear such that an extremum is attained at the upper boundary marked PMS for prin-
cipal of minimal sensitivity1; a different optimization of the perturbative result is fastest apparent
convergence (FAC), which turns out to be close to the former.

1A slightly different implementation of the PMS to the thermodynamical potential with roughly comparable results
has recently been presented in Ref. [20].
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Figure 1: Three-loop pressure in pure-glue QCD normalized to the ideal-gas value with unexpanded
effective-field-theory parameters when̄µ is varied betweenπT and 4πT (medium-gray band). The broad
light-gray band underneath is the strictly perturbative result to orderg5 with the same scale variations. The
full line gives the result upon extremalization (PMS) with respect toµ̄ (which does not have solutions be-
low ∼ 1.3Tc); the dash-dotted line corresponds to fastest apparent convergence (FAC) inm2

E, which sets
µ̄ ≈ 1.79πT. (From [18])

In the following, we shall first consider the extension to nonzero quark chemical potential
of the perturbative results obtained by Vuorinen by means ofthe effective field theory provided
by the technique of dimensional reduction. After a comparison with lattice results on the one
hand, and analytical results from the large-Nf limit of QCD on the other hand, we shall turn to the
case of chemical potentials much larger than the temperature. This regime turns out to be much
richer than the one at high temperature. For sufficiently lowtemperature, new phases with colour
superconductivity occur which can in fact be analysed by weak-coupling techniques applied to full
QCD [21, 22, 23, 24, 25, 26, 27]. In this regime, and also in thenormal phase at temperatures above
the critical one, non-Fermi-liquid effects play a crucial role. As we shall describe, the relevant
effective field theory in this situation is those of hard dense loops (HDL) [28, 29], and we have
used it to calculate systematically non-Fermi-liquid effects in entropy and specific heat as well
as in the dispersion laws of fermionic quasiparticles at lowtemperature and high quark chemical
potential.

2. Dimensional reduction at high temperature

When the coupling constant is small,g � 1, and temperatureT is the largest scale, there is
a natural hierarchy of scales: the “hard” scaleT, the “soft” scalegT, “ultrasoft” g2T, . . . . In the
imaginary-time formalism, the hard scaleT is carried by nonzero Matsubara frequenciesωn =

π inT with n even/odd for bosons/fermions, and all the softer scales involve only the zero modes
of the bosons. The “soft” scalegT is where collective phenomena such as Debye screening and
Landau damping occur2 and its effective field theory is Yang-Mills theory reduced to three spatial

2In plasmas with a momentum-space anisotropy, i.e. temperatures that depend on the direction, the scalegmax(T)
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dimensions3

LE =
1
2

trF2
i j + tr [Di,A0]

2 +m2
E trA2

0+
1
2

λE( trA2
0)

2 + . . . (2.1)

In lowest order one has a dimensionful couplingg2
E = g2T +O(g4) and [38]

m2
E = (1+Nf /6)g2T2 +g2∑

q

µ2
q

2π2 +O(g4), λE =
9−Nf

12π2 g4T + . . . . (2.2)

The dominant contributions to the thermodynamic pressure comes from the hard modes, and
these contributions are completely perturbative,

Phard= T4(c1 +c2g2 +c3g4 +c4g6 + . . .), (2.3)

though the coefficientsc≥3 depend on the cutoff (ΛE) required to separate hard from soft scales.
The soft contributions, on the other hand, are determined bythe effective three-dimensional theory,
and to three-loop order the result only involves the parametersgE andmE [3]

Psoft/T =
2

3π
m3

E − 3
8π2

(

4ln
ΛE

2mE
+3

)

g2
Em2

E −
9

8π3

(

89
24

− 11
6

ln2+
1
6

π2
)

g4
E mE + . . . (2.4)

The complete three-loop pressure of QCD is obtained by adding P = Phard+ Psoft, and to achieve
the maximal perturbative accuracyPhard as well as the effective field theory parametersgE andmE

are required to orderg4.

As long asT � mE, this program can be extended to finite quark chemical potential. Besides
modifying the parameters of the effective theory, there arealso new,C-odd terms in the effective
Lagrangian. The one with smallest dimension in nonabelian theories reads [39, 40, 41]

L
(µ)
E = i

g3

3π2 ∑
q

µq trA3
0. (2.5)

In general the effects of these additionalC-odd terms are small compared to theC-even operators.

One quantity which is determined to leading order by the operator (2.5) is the flavour off-
diagonal quark number susceptibility at zero chemical potential [42]

χi j ≡
∂ 2P

∂ µi∂ µ j
. (2.6)

When quark masses are negligible, all off-diagonal components are equal atµi = 0. Denoting
them byχ̃ , the leading-order term involves a logarithmic term comingfrom the exchange of three
electrostatic gluons and is given by [42]

χ̃ '−(N2−1)(N2−4)

384N

( g
π

)6
T2 ln

1
g
. (2.7)

is also the scale of magnetic instabilities [30, 31, 32, 33].
3The relevant effective theory for time-dependent problemsis still 3+1-dimensional and is given to leading order by

the so-called hard-thermal-loop (HTL) effective action [34, 35, 36, 37].
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Figure 2: The difference∆P = P(T,µ)−P(T,0) divided byT4 using the unexpanded three-loop result
from dimensional reduction of Ref. [48] forµ/T = 0.2, . . . ,1.0 (bottom to top). Shaded areas correspond
to a variation ofµ̄MS around the FAC-m choice by a factor of 2; dashed and dash-dotted lines correspond
to the FAC-g and FAC-m results, respectively. Also includedare the recent lattice data of Ref. [49] (not yet
continuum-extrapolated!) assumingTµ=0

c = 0.49ΛQCD. (From [54])

whereN is the number of colours. This vanishes in SU(2) gauge theory, but not in QCD, and also
not in QED, where (in the ultrarelativistic limit) [42]

χ̃
∣

∣

∣

QED
'− e6

24π6 T2 ln
1
e
. (2.8)

There has been for some time a discrepancy of the result (2.7)with lattice results on off-
diagonal quark-number susceptibilities. The authors of Refs. [43, 44] have obtained results in the
deconfined phase that were far below those predicted by perturbation theory, and have interpreted
this as new evidence for nonperturbative physics and the failure of weak-coupling methods. Most
recent lattice results [45, 46, 47] have disproved the previous ones, and there is now agreement
with the perturbative estimate atT ≥ 2Tc.

The complete three-loop pressure of QCD at finite quark chemical potential was recently cal-
culated by Vuorinen [48]. Like the result at zero quark chemical potential, there is poor conver-
gence and large renormalization scale dependence at realistic couplings, but again the apparent
convergence can be improved importantly by applying the prescription of Ref. [18] which keeps
effective-field-theory parameters unexpanded. Figure 2 shows the result for∆P= P(T,µ)−P(T,0)

for Nf = 2 at several values ofµ/T for which there are recent lattice data [49]. The shaded re-
gions correspond to variations of̄µMS by a factor of 2 around a FAC value, and the dashed lines
correspond to (two variants of) FAC̄µMS. At T/T0 = 2, the highest value considered in [49], the
FAC results exceed the not-yet-continuum-extrapolated lattice data consistently by≈ 10%, which
is roughly the expected discretization error [50]. When normalized to the free value∆P0 instead
of T4, the results would be essentiallyµ-independent and thus also very similar to theNf = 2+1
lattice results of Ref. [51] as well as the quasiparticle model results of Refs. [52, 53].

3. Large-Nf limit of QCD and QED

While the comparisons of weak-coupling results with lattice data are in remarkably good shape

5



P
o
S
(
J
H
W
2
0
0
5
)
0
1
3

Thermodynamics of QCD at large quark chemical potential Anton Rebhan

+ + + ....  =

Figure 3: Diagrams contribution to the thermodynamic potential of large-Nf QCD

at temperatures a few times the deconfinement temperature, it seems desirable to have a cleaner
testing ground for the resummation procedures required in applying weak-coupling techniques at
realistic temperatures. Guy Moore [55] has proposed to use the large-Nf limit of QCD and QED
for this purpose. Large-Nf QCD is much simpler than large-Nc QCD. In the limitNf → ∞, Nc ∼ 1,
g2Nf ∼ 1, the relevant diagrams are those displayed in Fig. 3. They involve a dressed gluon prop-
agator which contains typical gauge-theory phenomena suchas Debye screening for electrostatic
modes, unscreened magnetostatic modes, complicated dispersion laws, Landau damping, and also
plasmon damping. This is therefore a much richer theory thanthe large-N scalar field theories that
are frequently used for testing resummations of thermal perturbation theory.

In terms of the polarization tensorΠµν = Πµν
vac+ Πµν

mat, where the matter partΠµν
mat can be

decomposed in a transverse and a spatially longitudinal piece,ΠT andΠL, respectively, the thermal
pressure reads

P = NNf

(

7π2T4

180
+

µ2T2

6
+

µ4

12π2

)

+ Ng

∫

d3q
(2π)3

∫ ∞

0

dω
π

[

2
{

[

nb + 1
2

]

Imln
(

q2−ω2+ ΠT + Πvac
)

−1
2 Imln

(

q2−ω2+ Πvac
)

}

+
{

[

nb + 1
2

]

Imln
q2−ω2+ ΠL + Πvac

q2−ω2 − 1
2 Imln

q2−ω2+ Πvac

q2−ω2

}

]

+O(N−1
f ). (3.1)

The effective coupling is hidden inΠL,T and given by

g2
eff =















g2Nf

2
, QCD,

e2Nf , QED.

(3.2)

with exact one-loop beta function:

1

g2
eff(µ)

=
1

g2
eff(µ ′)

+
ln(µ ′/µ)

6π2 . (3.3)

There is no asymptotic freedom. In fact, there is a Landau singularity at exponentially large scales
ΛL = µ̄MSe5/6e6π2/g2

eff(µ̄MS), implying this theory exists only as a cutoff theory withΛCutoff < ΛL.
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Figure 4: Exact result for the interaction pressure at finite temperature and zero chemical potential at large
Nf as a function ofg2

eff(µ̄MS = πT), compared to strict perturbation theory [55, 56, 57]. The tiny red band
appearing for large values of the coupling for the exact result shows the cutoff dependence from varying
the upper numerical integration cutoff between 50% and 70% of the Landau poleΛL. The results of strict
perturbation theory are given through orderg2

eff (dotted line),g3
eff (dashed),g4

eff (dash-dotted), andg5
eff (dash-

dot-dotted) where the renormalization scaleµ̄MS is varied between12πT (line pattern slightly compressed),
πT, and 2πT (line pattern slightly stretched). The line labelled “FAC-m” indicates the scale chosen by the
prescription of fastest apparent convergence for which thecurves ofg4

eff andg5
eff coincide. (From [58])

However, for the purpose of testing thermodynamic results this is no problem as long as the effec-
tive cutoff provided by temperature and/or chemical potential T,µ � ΛL . It does however lead to
certain technical intricacies, sinceΛCutoff needs to be implemented such that Euclidean invariances
are respected in order not to produce spurious singularities [55, 56].

Comparing the available perturbative results with the “exact” large-Nf result obtained numer-
ically [55, 56] shows that strict perturbation theory has the usual problems of poor convergence
and largeµ̄-dependences (Fig. 4). The exact result has a curious nonmonotonic behaviour as a
function ofg2

eff, and only the small deviations from the free pressure at small coupling seem to be
unambiguously predicted by perturbation theory.

Figure 5 shows the result of an optimizedg6 result with the prescription of keeping the
effective-field-theory parametermE unexpanded. (The coefficient of theg6 term has been extracted
numerically with a 10% error shown by shaded bands.) The result agrees exceedingly well with the
exact result even for the largest coupling where the ambiguity introduced by the Landau singularity
is still under control.

Perhaps even more remarkably, the nontrivial behaviour of the thermodynamic potential has
recently been reproduced with comparable accuracy by usinga 2-loopΦ-derivable approximation
to the entropy (where the perturbative accuracy is actuallyonly orderg3) [59].

In Ref. [57] two of us have also evaluated the large-Nf pressure at finite chemical potential,
which is displayed in the 3-d plot of Fig. 6.

In Fig. 7 this result is compared with the perturbative result to orderg5 for two optimized renor-
malization scales. While this shows a fairly large region where the perturbative results obtained
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Figure 5: Exact result for the interaction pressure of large-Nf QCD at zero chemical potential [55, 56] as a
function ofg2

eff(µ̄MS = πT) or, alternatively, log10(ΛL/πT). The purple dashed line is the perturbative result
when the latter is evaluated with renormalization scaleµ̄MS = µ̄FAC ≡ πe1/2−γT; the blue dash-dotted lines
include the numerically determined coefficient to orderg6

eff (with its estimated error) at the same renormal-
ization scale. The result marked “g5

eff = g6
eff” corresponds to choosinḡµMS such that the order-g6

eff coefficient
vanishes and retaining all higher-order terms contained inthe plasmon term∝ m3

E.
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Figure 6: Exact result for the large-Nf interaction pressureP−P0 normalized toNg(π2T2 + µ2)2 as a
function ofg2

eff(µ̄MS) with µ̄2
MS = π2T2 + µ2, which is the radial coordinate, andϕ = arctan(πT/µ).
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Figure 7: Percentage errors of the perturbative result for the interaction part of the pressure to orderg5
eff

in the large-Nf limit for two choices ofµ̄MS: Fastest apparent convergence ofP as well asm2
E (FAC-m),

and ofg2
E (FAC-g). The brightest area corresponds to an error of less than 1%, the darkest ones to an error

of over 100%. The ratio of chemical potential to temperatureincreases from top to bottom according to
ϕ = arctan(πT/µ) so that 90◦ corresponds to high temperature and zero chemical potential, and 0◦ to zero
temperature and high chemical potential. The coupling is given in terms ofg2

eff(µ̄MS) at µ̄MS =
√

π2T2 + µ2.
(From [54])

through dimensional reduction is a good approximation, it also shows that there is a breakdown of
dimensional reduction at very small temperatureT < 0.1µ . In this regime it becomes necessary
to evaluate all infrared sensitive diagrams such as ring diagrams in four dimensions. Combining
such procedures with the existing analytical results to three-loop order should be able to fill in the
existing gap of perturbative results on the pressure for very small temperatures and high chemical
potential [60].

A three-loop result for the QCD pressure does exist at exactly zero temperature. It is due to
Freedman and McLerran [61, 62, 63] and it has recently been updated by Vuorinen [48]4. In the

4Another recent update has recently been provided by Ref. [64] where the effects of finite quark masses on the terms
of orderg2 have been computed.
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Figure 8: The interaction part of the pressure at zero temperature andfinite chemical potential as a function
of g2

eff(µ̄MS = µ) or, alternatively, log10(ΛL/µ), compared with the perturbative result of Freedman and
McLerran [61, 63] to orderg4

eff, and our numerically extracted order-g6
eff result, both with renormalization

scale in the perturbative results varied aroundµ̄MS = µ by a factor of 2. The coloured bands of theg6
eff-results

cover the error of the numerically extracted perturbative coefficients. (From [57])

large-Nf limit it reads

P−P0

Ng µ4

∣

∣

∣

T=0
= − g2

eff

32π4 −
[

ln
g2

eff

2π2 −
2
3

ln
µ̄MS

µ
−0.53583. . .

]

g4
eff

128π6 +O(g6
eff lngeff). (3.4)

The exact (but numerical) large-Nf result of Ref. [57] in fact provides a check of these results
as well as a numerical determination of the next terms to order g6

eff andg6
eff ln(geff):

P−P0

Ng µ4

∣

∣

∣

g6
eff,T=0,µ̄MS=µ

= [3.18(5) ln
2π2

g2
eff

+3.4(3)]
g6

eff

2048π8 . (3.5)

Figure 8 compares the exact and the perturbative results forthe large-Nf pressure at zero
temperature and high chemical potential, with the perturbative results evaluated for three values of
µ̄MS/µ .

4. Non-Fermi-liquid behavior

From the leading-order interaction term in the thermal pressure [65]

P−P0 = −Ng

[

5
9

T4 +
2

π2 µ2T2 +
1

π4 µ4
]

g2
eff

32
+ . . . (4.1)

one would expect that the entropy densityS =
(

∂P
∂T

)

µ
at smallT � µ should start as

S −S0 = −Ng
g2

eff

8π2 µ2T + . . . (4.2)

However, for sufficiently smallT, namely whenT � gµ , the interaction part of the entropy
density extracted from the exact large-Nf result (Fig. 9) has even a different sign. The contributions

10
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Figure 9: The interaction part of the entropy at smallT/µ for g2
eff(µ̄MS= µ) = 1, 4, and 9. The “non-nb”

contributions (dash-dotted lines) are negative and approximately linear inT with a coefficient agreeing with
the exchange term∝ g2

eff in the pressure at small coupling; the “nb” contributions (dashed lines), which are
dominated by transverse gauge boson modes, are positive andnonlinear inT such that the total entropy
exceeds the free-theory value at sufficiently smallT/µ .

to (3.1) which do not involve the Bose distribution functionnb do indeed behave in accordance to
the result (4.1), but those with the functionnb that one would expect to be negligible at very small
temperature turn out to become the dominant ones, and they contribute terms which are nonlinear
in T, implying a strong deviation from the usual behaviour of Fermi liquids [66]. This non-Fermi-
liquid behaviour is caused by long-range interactions, namely weakly screened magnetic modes.
At very small frequencies, the latter have a dynamical screening lengthκ = [πm2

Dω/4]1/3 and
it has been found long ago by Holstein, Norton, and Pincus [67] that this manifests itself in the
appearance of an anomalous contribution to the low-temperature limit of entropy and specific heat
proportional toαT lnT−1.

While this effect is perhaps too small for experimental detection in nonrelativistic situations,
it drew renewed theoretical attention more recently [68, 69, 70] after the detection of non-Fermi-
liquid behavior in the normal state of high-temperature superconductors [71] and in other systems
of strongly correlated electrons, which may be due to effective gauge field dynamics (see also
[72, 73, 74]).

In deconfined degenerate quark matter, the analogous effectcan more easily be important
because the larger coupling constantαs together with the relatively large number of gauge bosons
increases the numerical value of the effect by orders of magnitude. In contrast to the case of a high-
temperature quark-gluon plasma, chromomagnetostatic fields are expected to remain unscreened
in the low-temperature limit [21] and thus lead to the same singularities in the fermion self-energy
that are responsible for the breakdown of the Fermi-liquid description in the nonrelativistic electron
gas considered in [67].

An important consequence of such non-Fermi-liquid behavior in quantum chromodynamics
(QCD) is a reduction of the magnitude of the gap in color superconductors [21, 25, 26, 27] which
on the basis of weak-coupling calculations are estimated tohave a critical temperature in the range
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between 6 and 60 MeV [75]. Quark matter above this temperature has long-range chromomagnetic
interactions that should lead to an anomalous specific heat with possible relevance for the cooling
of young neutron stars as pointed out by Boyanovsky and de Vega [76, 77]. However, in Ref. [77]
these authors claimed that theαT lnT−1 term in the specific heat as reported in [67, 69, 70] would
not exist, neither in QCD nor in QED. Instead they obtained aαT3 lnT correction to the leading
ideal-gas behavior, which by renormalization-group arguments was resummed into aT3+O(α) cor-
rection as the leading non-Fermi-liquid effect on the specific heat.5 At low temperatures, such a
contribution would be rather negligible compared to standard perturbative corrections to the ideal-
gas result∝ T.

In Refs. [78, 79] we have recently been able to resolve these contradictory results and shown
that theαT lnT−1 term as obtained in [67, 69, 70] is indeed correct. In addition to the coefficient
of this leading logarithm, we have calculated the coefficient under the log as well as higher terms
in the low-T series, which come with fractional powers ofT,

S −S0

Ng
=

g2
effµ2T

36π2

(

ln
4geffµ
π2T

−2+ γE −
6

π2 ζ ′(2)

)

−8 22/3Γ(8
3)ζ (8

3)

9
√

3π11/3
(geffµ)4/3T5/3 +

80 21/3Γ(10
3 )ζ (10

3 )

27
√

3π13/3
(geffµ)2/3T7/3

+
2048−256π2−36π4 +3π6

540π2 T3
[

ln
geffµ

T
−4.3493485. . .

]

+O(T11/3). (4.3)

This expansion is systematic forT � geffµ , but breaks down atT ∼ geffµ ; for T � geffµ it
in fact has to switch to the perturbative series that can be obtained from dimensional reduction.
A result which covers allT � µ can be obtained by resumming the complete nonlocal HDL self
energies and is given by the compact expression [79]

1
Ng

(S −S
0) = −g2

effµ2T
24π2 − 1

2π3

∫ ∞

0
dq0

∂nb(q0)

∂T

∫ ∞

0
dqq2

[

2Im ln

(

q2−q2
0 + ΠHDL

T

q2−q2
0

)

+ Im ln

(

q2−q2
0+ ΠHDL

L

q2−q2
0

)]

+O(g4
effµ2T). (4.4)

For T � gµ this resums the above low-T series which is dominated by magnetic effects and for
geffµ � T � µ connects smoothly to the dimensional reduction result

1
Ng

(S −S0) '−g2
effµ2T
8π2 +

g3
effµ

3

12π4 (4.5)

where theO(g3) contribution is from electrical Debye screening. The numerical evaluation of (4.4)
together with the first few orders of the low-temperature series and the perturbative result from
dimensional reduction is shown in Fig. 10.

Figure 11 displays the resulting specific heat normalized toits ideal-gas value. The lines
marked “QED” correspond togeff = 0.303 orαQED ≈ 1/137, and the results forgeff = 2,3 corre-
spond toαs ≈ 0.32,0.72 in two-flavor QCD. (Recall thatg2

eff ≡ g2Nf /2.) While in QED the effect

5Resummation of theαT lnT−1 term along the lines of Ref. [77] would have led to aT1+O(α) term instead.
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Figure 10: The functionS(T/(geffµ)) which determines the leading-order interaction contribution to the
low-temperature entropy. The normalization is such thatS = −1 corresponds to the result of ordinary
perturbation theory. The various dash-dotted lines give the first few orders of the low-temperature series for
the entropy; the perturbative result from dimensional reduction to orderg2

eff andg3
eff is given by the full and

the long-dashed curves, resp. (from [79])

is tiny (the deviations from the ideal-gas value have been enlarged by a factor of 20 in Fig. 11 to
make them more visible), in QCD we find that there is an interesting range ofT/µ where there
is a significant excess of the specific heat over its ideal-gasvalue, whereas ordinary perturbation
theory [65] would have resulted in a low-temperature limit of Cv/C

0
v = 1−2αs/π. At sufficiently

low temperature,Cv/C
0
v may even become much larger than 1. As discussed in Ref. [80],the large

logarithm that appears in this limit is actually stable against higher-order corrections. However,
in QCD (though not in QED) the growth ofCv/C

0
v is limited by the appearance of a supercon-

ducting phase at sufficiently smallT. According to Ref. [75], the critical temperature for the color
superconducting phase transition may be anywhere between 6and 60 MeV, so with e.g. a quark
chemical potential ofµ = 500 MeV the rangeT/µ ≥ 0.012 in Fig. 11 might correspond to normal
quark matter with anomalous specific heat. While the effect remains small in QED, it seems con-
ceivable that the anomalous terms in the specific heat play a noticeable role in the thermodynamics
of proto-neutron stars, in particular its cooling behaviorin its earliest stages before entering color
superconductivity [81, 82].

The cooling of (proto-)neutron stars with a normal quark matter component is not only sen-
sitive to non-Fermi-liquid effects in the specific heat. Thelatter are in fact overcompensated by
two powers ofαs ln(m/T) appearing in the neutrino emissitivity [83] which come fromlogarith-
mic singularities in the group velocities of quark quasiparticles. While Ref. [83] assumed a single
scale for the two kinds of non-Fermi-liquid logarithms, a recent explicit calculation [84] showed
that these can be very different.

The scale of the logarithm in the specific heat is approximately given by log(0.282m/T) with
m2 ≡Nf (gµ/2π)2. At zero temperature, the group velocity of quark quasiparticles near the (would-
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Figure 11: The HDL-resummed result for the specific heatCv, normalized to the ideal-gas value forgeff = 2
and 3 corresponding toαs ≈ 0.32 and 0.72 in two-flavor QCD, andgeff ≈ 0.303 for QED. The deviation of
the QED result from the ideal-gas value is enlarged by a factor of 20 to make it more visible.

be) Fermi surface (ε = E−µ) reads [84]

v−1
g (ε) = 1+

g2Cf

12π2 ln
8.07m
|ε | +O((ε/m)2/3) (4.6)

which at small nonzero temperatureT � gµ is bounded by

v−1
g (0) = 1+

g2Cf

12π2 ln
9.15m

T
+O((T/m)3). (4.7)

Evidently the scale of the latter logarithm differs from that in the anomalous specific heat by more
than a factor of 30.

Higher terms in the smallε expansion of the group velocityv−1
g (ε) also involve fractional

powers, and a complete result for generalε can again be obtained by HTL resummation. The latter
is shown in Fig. 12 together with the first few terms of the small-ε expansion.

5. Conclusions

There has recently been substantial progress in applying weak-coupling methods to the ther-
modynamics of deconfined QCD, and we have made a case that their generally poor apparent
convergence can be greatly improved by suitable resummations. Results obtained from the effec-
tive field theory of dimensional reduction remain predictive for temperatures down to a few times
the deconfinement temperature (rather than many orders of magnitude higher as previously con-
cluded). This also holds true for nonzero chemical potential µ ∼ T, and in fact comparisons with
the available lattice data show reasonable agreement already atT ∼ 2Tc.

For temperaturesT ∼ gµ or smaller, the perturbative expansion obtained in the dimensional
reduction framework eventually breaks down because of non-Fermi-liquid effects. Those can be
calculated analytically by HDL resummation and give rise toanomalous terms in the specific heat
and related quantities. While tiny in QED, such effects may become important in the thermody-
namics of neutron stars with a normal quark matter component.
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Figure 12: The group velocity of quark quasiparticles plotted as(v−1
g −1)/(g2Cf ) over log10(E− µ/m) at

zero temperature.
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