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1. Introduction

It is well established that at high baryon density the combination of asymptotic freedom and
the existence of attractive channels in the color interaction between the quarks lying in the large
Fermi surface come together to promote the formation of quark-quark pairs, which in turn break the
color gauge symmetry giving rise to the phenomenon of color superconductivity. At densities much
higher than the masses of the u, d, and s quarks, one can assume the three quarks as massless and
the favored state results to be the so-called Color-Flavor-Locking (CFL) phase [1], characterized
by a spin zero diquark condensate antisymmetric in both color and flavor.

The conditions of extremely large density and very low temperature required for color super-
conductivity cannot be recreated in Earth’s labs. Fortunately, nature provides us with a laboratory to
probe color superconductivity, the cores of celestial compact objects. These compact stars typically
have very large magnetic fields. Neutron stars can have magnetic fields as large as B∼ 1012−1014

G in their surfaces, while in magnetars they are in the range B∼ 1014−1015 G, and perhaps as high
as 1016 G [2] (for a recent review of magnetic fields in dense stars see [3]). Even though we do not
know yet of any suitable mechanism to produce more intense fields, the virial theorem [4] allows
the field magnitude to reach values as large as 1018− 1019 G. If quark stars are self-bound rather
than gravitational-bound objects, the upper limit that has been obtained by comparing the magnetic
and gravitational energies, could go even higher.

A natural question to ask is: What is the effect, if any, of the huge star’s magnetic field in the
color superconducting core? A complete answer to this question would require a rather involved
study of quark matter at the intermediate range of densities proper of neutron stars, where the
strange quark mass cannot be ignored, with the additional complication of an extra parameter, the
magnetic field. However, as a first, more tractable approach to this question, one can ignore the
strange quark mass effects and look for the consequences of an external magnetic field on the
superconducting phase, assuming that the quark matter is formed by three massless flavors. This
was the strategy followed in our recent paper [5], whose main results will be described in what
follows.

In this talk I will show the way a magnetic field affects the pairing structure and hence its
symmetry, ultimately producing a different superconducting phase that we have called Magnetic
Color-Flavor-Locking (MCFL) phase.

In a conventional superconductor, since Cooper pairs are electrically charged, the electromag-
netic gauge invariance is spontaneously broken, thus the photon acquires a Meissner mass that can
screen a weak magnetic field, the phenomenon of Meissner effect. In spin-zero color superconduc-
tivity, although the color condensate has non-zero electric charge, there is a linear combination of
the photon and a gluon that remains massless [1]. This new field plays the role of the "in-medium"
photon in the color superconductor, so the propagation of light in the color superconductor is dif-
ferent from that in an electric superconductor.

Because of the long-range "rotated" electromagnetic field, a spin-zero color superconductor
may be penetrated by a rotated magnetic field B̃. Although a few works [6] had previously ad-
dressed the problem of the interaction of an external magnetic field with dense quark matter, none
of these studies considered the modification produced by the field on the gap itself. However, as
we have recently shown [5], the gap structure gets modified due to the penetrating field. To un-
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derstand this, notice that, although the condensate is Q̃-neutral, some of the quarks participating
in the pairing are Q̃-charged and hence can couple to the background field, which in turn affects
the gap equations through the Green functions of these Q̃-charged quarks. Due to the coupling
of the charged quarks with the external field, the color-flavor space is augmented by the Q̃-charge
color-flavor operator, and consequently the CFL order parameter splits in new independent pieces
giving rise to a new phase, the MCFL phase.

2. The MCFL Gap Structure

The linear combination of the photon Aµ and a gluon G8
µ that behaves as a long-range field in

the spin-zero color superconductor is given by [1, 7],

Ãµ = cosθAµ − sinθG8
µ , (2.1)

while the orthogonal combination G̃8
µ = sinθAµ + cosθG8

µ is massive. In the CFL phase the mix-
ing angle θ is sufficiently small (sinθ ∼ e/g ∼ 1/40). Thus, the penetrating field in the color
superconductor is mostly formed by the photon with only a small gluon admixture.

The unbroken U(1) group corresponding to the long-range rotated photon (i.e. the Ũ(1)e.m.)
is generated, in flavor-color space, by Q̃ = Q× 1− 1×Q, where Q is the electromagnetic charge
generator. We use the conventions Q = −λ8/

√
3, where λ8 is the 8th Gell-Mann matrix. Thus

our flavor-space ordering is (s,d,u). In the 9-dimensional flavor-color representation that we will
use in this paper (the color indexes we are using are (1,2,3)=(b,g,r)), the Q̃ charges of the different
quarks, in units of ẽ = ecosθ , are

s1 s2 s3 d1 d2 d3 u1 u2 u3

0 0 - 0 0 - + + 0
(2.2)

In the presence of an external rotated magnetic field the kinetic part of the quarks’ Lagrangian
density must be rewritten using the covariant derivative

Lem
quarks = ψ(iΠµγ

µ)ψ , (2.3)

with

Πµ = i∂µ + ẽQ̃Ãµ . (2.4)

where
Q̃ = Ω+−Ω− . (2.5)

is the rotated charge operator. The charge projectors

Ω+ = diag(0,0,0,0,0,0,1,1,0) , (2.6)

Ω− = diag(0,0,1,0,0,1,0,0,0) , (2.7)
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and
Ω0 = diag(1,1,0,1,1,0,0,0,1) , (2.8)

obey the algebra

ΩηΩη ′ = δηη ′Ωη , η ,η ′ = 0,+,− . (2.9)

Ω0 +Ω+ +Ω− = 1 . (2.10)

The rotated magnetic field naturally separates the quark fields according to their Q̃ charge.
The fermion field in the 9×9 representation used above, ψT = (s1,s2,s3,d1,d2,d3,u1,u2,u3), can
then be written as the sum of three fields with zero, positive and negative rotated electromagnetic
charges,

ψ = ψ(0) +ψ(+) +ψ(−) , (2.11)

where the (0)-, (+/−)-charged fields can be respectively written in terms of the charge projectors
as

ψ(0) = Ω0ψ , ψ(+) = Ω+ψ , ψ(−) = Ω−ψ . (2.12)

A strong magnetic field affects the flavor symmetries of QCD, as different quark flavors have
different electromagnetic charges. For three light quark flavors, only the subgroup of SU(3)L ×
SU(3)R that commutes with Q, the electromagnetic generator, is a symmetry of the theory. Simi-
larly, in the CFL phase a strong B̃ field should affect the symmetries of the theory, as Q̃ does not
commute with the whole locked SU(3) group. Based on the above considerations, and imposing
that the condensate should retain the highest degree of symmetry, we proposed [5] the following
ansatz for the gap structure in the presence of a magnetic field

∆ =



2∆
′
S 0 0 0 ∆A +∆S 0 0 0 ∆B

A +∆B
S

0 0 0 ∆S−∆A 0 0 0 0 0
0 0 0 0 0 0 ∆B

S −∆B
A 0 0

0 ∆S−∆A 0 0 0 0 0 0 0
∆A +∆S 0 0 0 2∆

′
S 0 0 0 ∆B

A +∆B
S

0 0 0 0 0 0 0 ∆B
S −∆B

A 0
0 0 ∆B

S −∆B
A 0 0 0 0 0 0

0 0 0 0 0 ∆B
S −∆B

A 0 0 0
∆B

A +∆B
S 0 0 0 ∆B

A +∆B
S 0 0 0 2∆

′′
S


(2.13)

We call the reader’s attention to the fact that despite the Q̃-neutrality of all the condensates,
they can be composed either by neutral or by charged quarks. Condensates formed by Q̃-charged
quarks feel the field directly through the minimal coupling of the background field B̃ with the
quarks in the pair. A subset of the condensates formed by Q̃-neutral quarks, can feel the presence
of the field via tree-level vertices that couple them to charged quarks. The gaps ∆B

A/S are anti-
symmetric/symmetric combinations of condensates composed by charged quarks and condensates
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formed by this kind of neutral quarks. The gaps ∆A, as well as ∆S, ∆
′
S and ∆

′′
S, on the other hand, are

antisymmetric and symmetric combinations of condensates formed by neutral quarks that do not
belong to the above subset. The only way the field can affect them is through the system of highly
non-linear coupled gap equations. At zero field the CFL gap matrix is recovered since in that case
∆B

A = ∆A and ∆B
S = ∆S = ∆

′
S = ∆

′′
S.

Although the symmetry of the problem allows for four independent symmetric gaps, the con-
densates ∆

′
S and ∆

′′
S are only due to subleading color symmetric interactions, and as explained in

the previous paragraph, they are formed by neutral quarks that are not coupled to charged quarks,
so they belong to the same class as ∆S. Therefore, there is no reason to expect that they will differ
much from ∆S. Hence, in a first approach to the problem, we will consider ∆S ' ∆

′
S ' ∆

′′
S.

The order parameter (2.13) implies the following symmetry breaking pattern: SU(3)color ×
SU(2)L × SU(2)R ×U(1)B ×U (−)(1)A ×U(1)e.m. → SU(2)color+L+R × Ũ(1)e.m.. The U (−)(1)A

symmetry is connected with the current which is an anomaly-free linear combination of s,d and u
axial currents [8]. The locked SU(2) corresponds to the maximal unbroken symmetry, and as such
it maximizes the condensation energy. Notice that it commutes with the rotated electromagnetic
group Ũ(1)e.m..

The counting of broken generators, after taking into account the Anderson-Higgs mechanism,
tells us that there are only five Nambu-Goldstone bosons. One is associated to the breaking of the
baryon symmetry; three Goldstone bosons are associated to the breaking of SU(2)A, and another
one associated to the breaking of U (−)(1)A. All the Nambu-Goldstone bosons are Q̃-neutral. The
number and properties of the lightest particles in the MCFL have implications for the low-energy
physics of the phase. Since in her talk Cristina Manuel will address the low-energy physics of the
MCFL phase, I will not extend on this topic in mine.

3. Effective Action in the Presence of a Magnetic Field

Let us construct the effective action of the system in the presence of a magnetic field. With this
aim, we will use a Nambu-Jona-Lasinio (NJL) four-fermion interaction abstracted from one-gluon
exchange [1]. Although this simplified treatment disregards the effect of the B̃-field on the gluon
dynamics and assumes the same NJL couplings for both the situation with and without magnetic
field, it keeps the main attributes of the theory, thereby providing the correct qualitative physics.

We start from the mean-field effective action

IB(ψ,ψ) =
∫
x,y

{1
2
[ψ(0)(x)[G

+
(0)0]

−1(x,y)ψ(0)(y)+ψ(+)(x)[G
+
(+)0]

−1(x,y)ψ(+)(y)

+ψ(−)(x)[G
+
(−)0]

−1(x,y)ψ(−)(y)+ψ(0)C(x)[G−
(0)0]

−1(x,y)ψ(0)C(y)

+ψ(+)C(x)[G−
(+)0]

−1(x,y)ψ(+)C(y)+ψ(−)C(x)[G−
(−)0]

−1(x,y)ψ(−)C(y)]

+
1
2
[ψ(0)C(x)∆+(x,y)ψ(0)(y)+h.c.]+

1
2
[ψ(+)C(x)∆+(x,y)ψ(−)(y)

+ψ(−)C(x)∆+(x,y)ψ(+)(y)+h.c.]} , (3.1)

where the external magnetic field has been explicitly introduced through minimal coupling with the
Q̃−charged fermions. The presence of the field is also taken into account in the diquark condensate
∆+ = γ5∆, whose color-flavor structure is given by Eq.(2.13).
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In (3.1) symbols in parentheses indicate neutral (0), positive (+) or negative (−) Q̃−charged
quarks. Supra-indexes + or − in the propagators indicate, as it is customary, whether it is the
inverse propagator of a field or conjugated field respectively. Then, for example, [G−

(+)0]
−1 corre-

sponds to the bare inverse propagator of positively charged conjugate fields, and so on. The explicit
expressions of the inverse propagators are

[G±
(0)0]

−1(x,y) = [iγµ
∂µ −m±µγ

0]δ 4(x− y) , (3.2)

[G±
(+)0]

−1(x,y) = [iγµ
Π

(+)
µ −m±µγ

0]δ 4(x− y) , (3.3)

[G±
(−)0]

−1(x,y) = [iγµ
Π

(−)
µ −m±µγ

0]δ 4(x− y) , (3.4)

with

Π
(±)
µ = i∂µ ± ẽÃµ . (3.5)

Transforming the field-dependent quark propagators to momentum space can be performed
with the use of the Ritus’ method, originally developed for charged fermions [9] and recently
extended to charged vector fields [10]. In Ritus’ approach the diagonalization in momentum space
of charged fermion Green’s functions in the presence of a background magnetic field is carried out
using the eigenfunction matrices Ep(x). These are the wave functions of the asymptotic states of
charged fermions in a uniform magnetic field and play the role in the magnetized medium of the
usual plane-wave (Fourier) functions eipx at zero field. Below we introduce the basic properties of
this transformation.

The transformation functions E(±)
q (x) for positively (+), and negatively (−) charged fermion

fields are obtained as the solutions of the field dependent eigenvalue equation

(Π(±) · γ)E(±)
q (x) = E(±)

q (x)(γ · p(±)) , (3.6)

with p(±) given by

p(±) = (p0,0,±
√

2|ẽB̃|k, p3) , (3.7)

and
E(±)

q (x) = ∑
σ

E(±)
qσ (x)δ (σ) , (3.8)

with eigenfunctions

E(±)
pσ (x) = Nn(±)e

−i(p0x0+p2x2+p3x3)Dn(±)(ρ(±)) , (3.9)

where Dn(±)(ρ(±)) are the parabolic cylinder functions with argument ρ(±) defined by

ρ(±) =
√

2|ẽB̃|(x1± p2/ẽB̃) , (3.10)
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and index n(±) given by

n(±) ≡ n(±)(k,σ) = k± ẽB̃

2|ẽB̃|
σ − 1

2
, n(±) = 0,1,2, ... (3.11)

k = 0,1,2,3, ... is the Landau level, and σ is the spin projection that can take values ±1 only.
Notice that in the lowest Landau level, k = 0, only particles with one of the two spin projections,
namely, σ = 1 for positively charged particles, are allowed. The normalization constant Nn(±) is

Nn(±) = (4π|ẽB̃|)
1
4 /
√

n(±)! . (3.12)

In (3.8) the spin matrices δ (σ) are defined as

δ (σ) = diag(δσ1,δσ−1,δσ1,δσ−1), σ =±1 , (3.13)

and satisfy the following relations

δ (±)† = δ (±) , δ (±)δ (±) = δ (±) , δ (±)δ (∓) = 0 , (3.14)

γ
q
δ (±) = δ (±)γ

q, γ
⊥

δ (±) = δ (∓)γ
⊥ . (3.15)

In Eq. (3.15) the notation γq = (γ0,γ3) and γ⊥ = (γ1,γ2) was used.
The functions E(±)

p are complete

∑
k

∫
d p0d p2d p3E(±)

p (x)E(±)
p (y) = (2π)4

δ
(4)(x− y) , (3.16)

and orthonormal,∫
x
E(±)

p′ (x)E(±)
p (x) = (2π)4

Λkδkk′δ (p0− p′0)δ (p2− p′2)δ (p3− p′3) (3.17)

with the (4×4) matrix Λk given by

Λk =

{
δ (σ = sgn[eB]) f or k = 0,

I f or k > 0.
(3.18)

The matrix structure Λk was recently introduced in Ref. [11]. It had been previously omitted
in the orthonormal condition of the Ep(x) functions given in Refs. [9, 10, 12]. Nevertheless,
it should be underlined that this matrix only appears in the zero Landau level contribution, and
consequently it enters as an irrelevant multiplicative factor in the Schwinger-Dyson equations in
the lowest Landau level approximation. Thus, all the results obtained in the works [9, 10, 12]
remain valid. In Eqs. (3.16)-(3.17) we introduced the notation E(±)

p (x) = γ0(E
(±)
p (x))†γ0.

Under the Ep(x) functions, positively (ψ(+)), negatively (ψ(−)) charged fields transform ac-
cording to

ψ(±)(x) = ∑
k

∫
d p0d p2d p3E(±)

p (x)ψ(±)(p) , (3.19)
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ψ(±)(x) = ∑
k

∫
d p0d p2d p3ψ(±)(p)E(±)

p (x) . (3.20)

One can show that

[γµ(Π(+)µ ±µδµ0)−m]E(+)
p (x) = E(+)

p (x)[γµ(p(+)
µ ±µδµ0)−m] , (3.21)

and
[γµ(Π(−)µ ±µδµ0)−m]E(−)

p (x) = E(−)
p (x)[γµ(p(−)

µ ±µδµ0)−m] . (3.22)

The conjugate fields transform according to,

ψ(+)C(x) = ∑
k

∫
d p0d p2d p3E(−)

p (x)ψ(+)C(p), (3.23)

ψ(−)C(x) = ∑
k

∫
d p0d p2d p3E(+)

p (x)ψ(−)C(p) . (3.24)

After transforming to momentum space one can introduce Nambu-Gorkov fermion fields of
different Q̃ charges. They are the Q̃-neutral Gorkov field

Ψ(0) =

(
ψ(0)

ψ(0)C

)
, (3.25)

the positive

Ψ(+) =

(
ψ(+)

ψ(−)C

)
, (3.26)

and the negative one

Ψ(−) =

(
ψ(−)

ψ(+)C

)
. (3.27)

Using them, the Nambu-Gorkov effective action in the presence of a constant magnetic field B̃
can be written as

IB(ψ,ψ) =
1
2

∫ d4 p
(2π)4 Ψ(0)(p)S −1

(0) (p)Ψ(0)(p)

+
1
2

∫ d4 p
(2π)4 Ψ(+)(p)S −1

(+)(p)Ψ(+)(p)+
1
2

∫ d4 p
(2π)4 Ψ(−)(p)S −1

(−)(p)Ψ(−)(p) , (3.28)

where

S −1
(0) (p) =

 [G+
(0)0]

−1(p) ∆
−
(0)

∆
+
(0) [G−

(0)0]
−1(p)

 , (3.29)

S −1
(+)(p) =

 [G+
(+)0]

−1(p) ∆
−
(+)

∆
+
(+) [G−

(+)0]
−1(p)

 , (3.30)
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S −1
(−)(p) =

 [G+
(−)0]

−1(p) ∆
−
(−)

∆
+
(−) [G−

(−)0]
−1(p)

 , (3.31)

with

∆
+
(+) = Ω−∆

+
Ω+, (3.32)

∆
+
(−) = Ω+∆

+
Ω−, (3.33)

∆
+
(0) = Ω0∆

+
Ω0, (3.34)

Notice that to form the positive (negative) Nambu-Gorkov field we used the positive (negative)
fermion field and the charge conjugate of the negative (positive) field. This is done so that the ro-
tated charge of the up and down components in a given Nambu-Gorkov field be the same. This way
to form the Nambu-Gorkov fields is mandated by what kind of field enters in a given condensate
term, which in turn is related to the neutrality of the fermion condensate 〈ψCψ〉 with respect to the
rotated Q̃-charge.

In momentum space the bare inverse propagator for the neutral field is

[G±
(0)0]

−1(p) = [γµ(pµ ±µδµ0)−m] , (3.35)

where the momentum is the usual p = (p0, p1, p2, p3) of the case with no background field.
For positively and negatively charged fields the bare inverse propagators are

[G±
(+)0]

−1(p) = [γµ(p(+)
µ ±µδµ0)−m] , (3.36)

and
[G±

(−)0]
−1(p) = [γµ(p(−)

µ ±µδµ0)−m] (3.37)

respectively.

4. Gap Solutions

The main question we would like to address now is: Can we find a region of magnetic fields
where the gaps ∆A and ∆B

A, (or ∆S and ∆B
S ), differ enough from each other that the system is not in

the CFL phase anymore, but in the MCFL phase? To explore the possible answer to this question
we need to solve the gap equations derived from the Nambu-Gorkov effective action (3.28).

In coordinate space the QCD gap equation reads

∆
+(x,y) = i

g2

4
λ

T
A γ

µ S21(x,y)γν
λBDAB

µν(x,y) , (4.1)

where S21(x,y) is the off-diagonal part of the Nambu-Gorkov fermion propagator in coordinate
space and, for simplicity, we have omitted explicit color and flavor indices in the gap and fermion
propagator. Here DAB

µν is the gluon propagator.
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In a NJL model the gap equation can be obtained from Eq. (4.1) simply by substituting the
gluon propagator by

DAB
µν(x,y) =

1
Λ2 gµν δ

AB
δ

(4)(x− y) . (4.2)

The NJL model is characterized by a coupling constant g and an ultraviolet cutoff Λ. The
ultraviolet cutoff should be much larger than any of the energy scales of the system, typically the
chemical potential. In the presence of a magnetic field we should also assume that Λ is larger than
the magnetic energy

√
ẽB̃. In other studies of color superconductivity within the NJL model, the

values of g and Λ are chosen to match some QCD vacuum properties, thus hoping to get in such
a way correct approximated quantitative results of the gaps. We will follow the same philosophy
here, noticing however that this completely ignores the effect of the magnetic field on the gluon
dynamics.

To solve the gap equation (4.1) for the whole range of magnetic-field strengths we need to use
numerical methods. We have found, however, a situation where an analytical solution is possible.
This corresponds to the case ẽB̃ & µ2/2. Taking into account that the leading contribution to the
gap solution comes from quark energies near the Fermi level, it follows that for fields in this range
only the LLL (l = 0) contributes.

Using the approximation ∆B
A � ∆B

S ,∆A, and ∆A � ∆S, the gap equations decouple and the
equation for ∆B

A is

∆
B
A ≈ g2

3Λ2

∫
Λ

d3q
(2π)3

∆B
A√

(q−µ)2 +2(∆B
A)2

+
g2ẽB̃
3Λ2

∫
Λ

−Λ

dq
(2π)2

∆B
A√

(q−µ)2 +(∆B
A)2

, (4.3)

where the first/second term in the r.h.s. of Eq.(4.3) corresponds to the contribution of Q̃-neutral/charged
quark propagators, respectively. For the last one, we dropped all Landau levels but the lowest, as
we are interested in the leading term.

The solution of Eq. (4.3) reads

∆
B
A ∼ 2

√
δ µ exp

(
− 3Λ2π2

g2
(

µ2 + ẽB̃
)) , (4.4)

with δ ≡ Λ−µ . It can be compared with the antisymmetric CFL gap [13]

∆
CFL
A ∼ 2

√
δ µ exp

(
− 3Λ2π2

2g2µ2

)
. (4.5)

In this approximation the remaining gap equations read

∆
B
S ≈ − g2

6Λ2

∫
Λ

d3q
(2π)3

∆B
A√

(q−µ)2 +2(∆B
A)2

+
g2ẽB̃
6Λ2

∫
Λ

−Λ

dq
(2π)2

∆B
A√

(q−µ)2 +(∆B
A)2

, (4.6)
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∆A ≈ g2

4Λ2

∫
Λ

d3q
(2π)3

(17
9

∆A√
(q−µ)2 +∆2

A

+
7
9

∆A√
(q−µ)2 +2(∆B

A)2

)
, (4.7)

and

∆S ≈
g2

18Λ2

∫
Λ

d3q
(2π)3

(
∆A√

(q−µ)2 +∆2
A

− ∆A√
(q−µ)2 +2(∆B

A)2

)
. (4.8)

We express below the solution of these gap equations as ratios over the CFL antisymmetric
and symmetric gaps

∆A

∆CFL
A

∼ 1
2(7/34) exp

(
− 36

17x
+

21
17

1
x(1+ y)

+
3
2x

)
, (4.9)

where x ≡ g2µ2/Λ2π2, and y≡ ẽB̃/µ2, and

∆B
S

∆CFL
S

∼ ∆B
A

∆CFL
A

(
3
4

+
9

2x ln2
y−1
y+1

)
, (4.10)

∆S

∆CFL
S

∼ ∆A

∆CFL
A

3
2

(
1− 4

1+ y

)
. (4.11)

Note that our analytic solutions are only valid at strong magnetic fields. The lower value
ẽB̃ ∼ µ2/2 corresponds to ẽB̃ ∼ (0.8− 1.1) · 1018G, for µ ∼ 350− 400 MeV. For fields of this
order and larger the ∆B

A gap is larger than ∆CFL
A at the same density values. Nevertheless, we have

estimated (see the details in Cristina Manuel’s talk in the proceedings) that the separation between
CFL and MCFL will take place already at fields ∼ 1016G.

All the gaps feel the presence of the external magnetic field. The effect of the magnetic field
in ∆B

A is to increase the density of states, which enters in the argument of the exponential as typical
of a BCS solution. The density of states appearing in (4.4) is just the sum of those of neutral and
charged particles participating in the given gap equation (for each Landau level, the density of
states around the Fermi surface for a charged quark is ẽB̃/2π2).

All the Q̃-charged quarks have common gap ∆B
A. Hence, the densities of the charged quarks

are all equal. As two of these quarks have positive Q̃ charge, while the other two have it negative,
the Q̃ neutrality of the medium is guaranteed without having to introduce any electron density.

5. Conclusions

In this paper, we have shown that a magnetic field leads to the formation of a new color-flavor
locking phase, characterized by a smaller vector symmetry than the CFL phase. The essential
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role of the penetrating magnetic field is to modify the density of states of charged quarks on the
Fermi surface. To better understand the relevance of this new phase in astrophysics we need to
explore the region of moderately strong magnetic fields ẽB̃ < µ2/2, which requires to carry out
a numerical study of the gap equations including the effect of higher Landau levels. Because the
total density of states around the Fermi surface for charged particles does not vary monotonically
with the number of Landau levels, we still expect to find a meaningful splitting of the gaps at these
fields and therefore a qualitative separation between the CFL and MCFL phases.
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