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1. Introduction

There have been several first-order phase transitions expected in the stellar objects: liquid-gas
transition in supernova matter, neutron-drip, meson condensation and hadron-quark transitions in
neutron stars. In such first-order transitions with more than one chemical potential, non-uniform
mixed phases called “pasta” structures have been discussed as a consequence of phase equilibrium
given by the Gibbs conditions. As density is increased, the geometrical structure of the mixed
phase changes from droplet, rod, slab, tube, and to bubble. Naively speaking, pasta structures are
expected to be realized due to the balance of surface tension and the Coulomb repulsion, which are
called the finite-size effects. In the previous studies so far, however, the Coulomb interaction was
treated rather simply and the surface tension was often introduced by hand.

We numerically study the non-uniform mixed phase by invoking the density functional the-
ory with relativistic mean fields which includes the Coulomb interaction fully consistent with the
charged particle distribution. The surface tension is naturally given by the spatial variation of the
meson mean fields. With this framework, we discuss the effects of the Coulomb interaction and the
surface tension on the pasta structure in the case of low density matter and kaonic pasta following
K− condensation at high densities. We clearly see an important effect, the charge screening effect,
in our numerical results.

2. Framework

Following the idea of the density functional theory within the RMF model, we can derive the
equations of motion to study non-uniform nuclear matter numerically, cf. [1]. In our framework,
the Coulomb interaction is properly included in the equations of motion for nucleons, electrons,
kaons and meson mean fields. Then we solve the Poisson equation for the Coulomb potential VCoul

self-consistently with other equations. We start with the thermodynamic potential for the system
of neutrons, protons, electrons, kaons (K−) and meson mean fields,

Ω = ΩN +ΩM +Ωe +ΩK. (2.1)

The first term

ΩN = ∑
a=p,n

∫

d3r

[

∫ kF,a

0

d3k
4π3

√

m∗
N

2 + k2 −ρaνa

]

(2.2)

is the contribution of nucleons with the local Fermi momenta kF,a(r);a = n, p and the effective
nucleon mass m∗

N(r) = mN − gσNσ(r) with mN being the bare nucleon mass. Nucleons couple
with the scalar (σ ), vector (ω and ρ) mean fields to give νn(r) = µn − gωNω0(r) + gρNR0(r),
νp(r) = µp +VCoul(r)−gωNω0(r)−gρNR0(r), where µn and µp are neutron and proton chemical
potentials and gσN , gωN and gρN are the coupling constants. The second term in (2.1) incorporates
the contribution by the scalar and vector mean fields,

ΩM =
∫

d3r

[

(∇σ)2 +m2
σ σ 2

2
+U(σ)−

(∇ω0)
2 +m2

ωω2
0

2
−

(∇R0)
2 +m2

ρR2
0

2

]

, (2.3)

where mσ , mω and mρ are the meson masses, and U(σ) = 1
3 bmN(gσN σ)3 + 1

4 c(gσN σ)4 is the
nonlinear potential for the scalar field. The third term in (2.1) summarizes the contribution of the
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Coulomb potential VCoul(r) and the contribution of relativistic electrons,

Ωe =
∫

d3r

[

−
1

8πe2 (∇VCoul)
2 −

(µe −VCoul)
4

12π2

]

, (2.4)

where µe is the electron chemical potential. The last term in (2.1) is the thermodynamic potential
of the kaon field K = fKθ/

√
2 with the kaon decay constant fK ' 93 MeV,

ΩK =

∫

d3r

{

−
f 2
Kθ 2

2

[

−m∗
K

2 +(µK −VCoul +gωKω0 +gρKR0)
2
]

+
f 2
K(∇θ)2

2

}

, (2.5)

where m∗
K(r) = mK − gσKσ(r) is the effective K− mass with mK being the bare kaon mass, gσK ,

gωK , gρK are the coupling constants, and µK is the kaon chemical potential. The kaon charge
density ρK is expressed in terms of the kaon field θ as

ρK = −
(

µK −VCoul +gωKω0 +gρKR0
)

f 2
Kθ 2. (2.6)

Temperature T is kept zero in the present study.
The equations of motion for the mean fields, kaon and the Coulomb potential are given by

the variational principle δΩ
δφi(r)

= 0 (φi = σ ,ω0,R0,θ ,VCoul). Similarly the density functions for

nucleons and electrons are given by δΩ
δρa(r)

= 0 (a = n, p,e). These equations read

∇2σ(r) = m2
σ σ(r)+

dU
dσ

−gσN(ρ (s)
n (r)+ρ (s)

p (r))+2gσK mK f 2
Kθ 2(r), (2.7)

∇2ω0(r) = m2
ωω0(r)−gωN(ρp(r)+ρn(r))

− f 2
KgωKθ 2(r)(µK −VCoul(r)+gωKω0(r)+gρKR0(r)), (2.8)

∇2R0(r) = m2
ρ R0(r)−gρN(ρp(r)−ρn(r))

− f 2
KgρKθ 2(r)(µK −VCoul(r)+gωKω0(r)+gρKR0(r)), (2.9)

∇2θ(r) =
[

m∗
K(r)2 − (µK −VCoul(r)+gωKω0(r)+gρKR0(r))2

]

θ(r), (2.10)

∇2VCoul(r) = 4πe2ρch(r), (charge density ρch(r) = ρp(r)+ρe(r)+ρK(r)) , (2.11)

µB = µn =

√

kFn(r)2 +m∗
N(r)2 +gωNω0(r)−gρNR0(r), (2.12)

µB −µe = µp =

√

kF p(r)2 +m∗
N(r)2 +gωNω0(r)+gρNR0(r)−VCoul(r). (2.13)

The last two equations are the standard relations between the local nucleon densities and chemical
potentials within the Thomas-Fermi approximation. We assume that the system is in β equilibrium.
Then we have only two independent chemical potentials, the baryon-number chemical potential
µB = µn and the charge chemical potential, i.e. the electron chemical potential, µe, according to the
corresponding conserved charges. Under the same assumption µK = µe.

To solve the above coupled equations numerically, the whole space is divided into equiva-
lent Wigner-Seitz cells. The geometrical shape of the cell changes as follows: sphere in three-
dimensional (3D) calculation, cylinder in 2D and slab in 1D, respectively. Each cell is globally
charge-neutral and all physical quantities in the cell are smoothly connected to those of the next
cell with zero gradients at the boundary. Every point inside the cell is represented by the grid
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Figure 1: Examples of the density profiles in the cell for symmetric nuclear matter with Yp=0.5 (left panel)
and for asymmetric matter with Yp = 0.3 (center panel) and 0.1 (right panel).

points (number of grid points Ngrid ≈ 100) and differential equations for fields are solved by the re-
laxation method for a given averaged baryon-number density under constraints of the global charge
neutrality. Details of the numerical procedure are explained in Ref. [2].

Parameters in the RMF model are chosen to reproduce saturation properties of nuclear mat-
ter: the minimum energy per nucleon −16.3 MeV at ρ = ρ0 ≡ 0.153 fm−3, the incompressibility
K(ρ0) = 240 MeV, the effective nucleon mass m∗

N(ρ0) = 0.78mN ; mN = 938 MeV, and the isospin-
asymmetry coefficient asym = 32.5 MeV. Coupling constants and meson masses used in our calcu-
lation are as follows: gσN = 6.3935, gωN = 8.7207, gρN = 4.2696, b = 0.008659, c = 0.002421,
mσ = 400 MeV, mω = 783 MeV, mρ = 769 MeV, mK = 494 MeV, gωK = gωN/3, gρK = gρN ,
UK(ρ0) = −130 MeV. We have checked that with these parameters and by including the Coulomb
interaction, the binding energies of finite nuclei and the proton fraction, as well as the nucleon
density profiles are well reproduced, except for very light nuclei [2].

3. Pasta structures in nuclear matter

First, we are concentrated on the discussion of the behavior of low-density nucleon matter at
a fixed value of the proton number ratio Yp. The cases Yp = 0.3 – 0.5 should be relevant for the
supernova matter and for newly born neutron stars. In this fixed Yp case, a part of the condition
(2.13), i.e. beta equilibrium, is not fulfilled. Note that at this low density case kaon does not appear:
θ in Eq. (2.10) remains zero. Figure 1 shows some typical density profiles inside the Wigner-Seitz
cells. The geometrical dimension of the cell is denoted as “3D” etc. The horizontal axis in each
panel denotes the radial distance from the center of the cell. The cell boundary is indicated by the
hatch. From the top to the bottom the configuration corresponds to droplet (3D), rod (2D), slab
(1D), tube (2D), and bubble (3D). The nuclear “pasta” structures are clearly manifested. For the
lowest Yp case (Yp = 0.1), the neutron density is finite at any point: the space is filled by dripped
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Figure 2: Binding energy per nucleon, and the cell and structure sizes, Rcell and Rd, for nuclear matter with
Yp=0.5, 0.3 and 0.1.

neutrons. We can apparently see the charge screening effects: due to the spatial rearrangement
of electrons the electron density profile becomes no more uniform. This non-uniformity of the
electron distribution is more pronounced for a higher Yp and a higher density. Since protons repel
each other, the proton density profile substantially deviates from the step-function: the proton
density is enhanced near the surface of the nucleus.

The equation of state (EOS) for the sequence of geometric structures is shown in Fig. 2 (top
panels) as a function of the averaged baryon-number density. Note that the energy E −mN also
includes the kinetic energy of electrons, which makes the total pressure positive. The lowest-energy
configurations are selected among various geometrical structures. The most favorable configuration
changes from the droplet to rod, slab, tube, bubble, and to the uniform one (the dotted thin curve)
with increase of density. The appearance of non-uniform structures in matter results in a softening
of EOS: the energy per baryon gets lower up to about 15 MeV/A compared to the uniform matter.

The bottom panels in Fig. 2 show the cell size Rcell and the structure size Rd (radii of droplet,
rod, slab, tube and bubble) versus averaged baryon number density. Dashed curves show the Debye
screening lengths of electron and proton, λ (e)

D and λ (p)
D for comparison. Numerically, the cell sizes

Rcell for droplet, rod, and slab configurations at Yp = 0.5 and 0.3 were proven to be close to the

electron screening lengths. For the tube, Rcell is larger than λ (e)
D . For Yp = 0.1, in all cases Rcell is

substantially smaller than λ (e)
D and thereby the electron screening should be much weaker. In all

cases, except for bubbles (at Yp = 0.5 and 0.3), the structure sizes Rd are smaller than λ (e)
D . This

means that the Debye screening effect of electrons inside these structures should not be pronounced.
For bubbles at Yp = 0.5 and 0.3, λ (e)

D is substantially smaller than the cell size and the electron
screening should be significant. For Yp = 0.5, 0.3, 0.1 in all cases (with the only exception Yp = 0.1

for slabs), the value λ (p)
D is shorter than Rd . Hence the density rearrangement of protons is essential

for the pasta structures, as it is indeed seen from the Fig. 1.

We have also studied the structure of nucleon matter in beta equilibrium. We have found that
only one type of structures is realized: proton-enriched droplets embedded in the neutron sea. No
other geometrical structures like rod, slab, etc. appeared. One can note the similarity of the case of
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Figure 3: Density profiles of kaonic structures.
Here the density does not mean charge-density but
number-density of particles. Displayed using the
right axis is the Coulomb potential VCoul (written as
“V ”).
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Figure 4: Top: Binding energy per nucleon of the
nuclear matter in the beta equilibrium. The dotted
line below the cross shows the uniform normal nu-
clear matter and above the cross, the uniform kaonic
matter. Bottom: Structure size Rd (thick curves be-
low) and cell size Rcell (thick curves above). Com-
pared are the Debye screening lengths of electron,
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beta equilibrium and that of small proton ratio (Yp = 0.1) where the droplet phase is more dominant.

Next we explore high-density nuclear matter in beta-equilibrium, which is expected in the in-
ner core of neutron stars. Kaons are the lightest mesons with strangeness, and their effective energy
is much reduced by the kaon-nucleon interaction in nuclear medium. For low-energy kaons the s-
wave interaction is dominant and attractive in the I = 1 channel, so that negatively charged kaons
appear in the neutron-rich matter once the process n → p + K− becomes energetically allowed.
Since kaons are bosons, it causes the Bose-Einstein condensation at zero momentum [3].

Since the kaon condensation is of the first order, it may give rise to non-uniform structure
as a structured mixed phase. In fact, the system exhibits a series of structure change similar to
the nuclear “pasta”: the kaonic droplet, rod, slab, tube, bubble (which we call “kaonic pasta”
structures). Figure 3 displays typical density profiles and the Coulomb potential. The neutron
distribution proves to be rather flat. The proton distribution on the other hand is strongly correlated
with the kaon distribution, which means that the Coulomb interaction is crucial.

In the upper panel of Fig. 4 we depict the energy per nucleon of the matter. The dotted line
indicates the case of single phase (if one assumes absence of the mixed phase). In this case uniform
matter consists of normal nuclear matter below the critical density and kaonic matter above the
critical density. The cross on the dotted line (ρB ' 0.46 fm−3) shows the critical density, i.e. the
point where kaons begin to condensate in the case of single phase. Pieces of solid curves, on the
other hand, indicate energetically favored structures. Droplets begin to appear for ρB > 0.41 fm−3

smoothly decreasing the energy of the system. The mixed phase disappears for ρB > 0.74 fm−3.

The lower panel of Fig. 4 shows the structure sizes Rd and the cell sizes Rcell. We find that at the
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Figure 5: Comparison of the density profiles for different treatments of the Coulomb interaction. From the
left: “full” calculation, “no Coulomb” and “weak surface” calculation. The proton number ratio is Y p=0.5
for all cases.
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Figure 6: Top: the binding energy per nucleon of the nuclear matter in beta equilibrium. The electric
potential is discarded determining the density profile and added evaluating the energy. Bottom: the structure
size Rd (thick curves below) and the cell size Rcell (thick curves above).

onset density the size of the cell is infinitely large in case of the full calculation. The corresponding
steep increase of Rcell with decreasing density is clearly seen in the figure. The dashed lines and the
dotted line in the lower panel of Fig. 4 show partial contributions to the Debye screening lengths of
the electron, proton and kaon, λ (e)

D , λ (p)
D , and λ (K)

D , respectively. We see that in most cases λ (e)
D is

less than the cell size Rcell but it is larger than the structure size Rd . The proton Debye length λ (p)
D

and the kaon Debye length λ (K)
D , on the other hand, are always shorter than Rcell and Rd .

4. Charge screening effect

To demonstrate the charge screening effects we compare results of the full calculation with
those given by a “perturbative” treatment of the Coulomb interaction often used in the literature,
“no Coulomb” calculation. The electric potential is discarded in equations of motion (2.6)–(2.10),
(2.12), (2.13) which determine the density profiles. The Coulomb energy is then added to the total
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energy by using the charge density profile thus determined to find the optimal value with respect to
the cell size Rcell.

First, we discuss the case of low-density symmetric nuclear matter. In the left and the central
panels of Fig. 5, compared are different treatments of the Coulomb interaction. The EOS (upper
panels) as a whole shows almost no dependence on the treatments of the Coulomb interaction.
However, sizes of the cell and the nucleus (lower panels), especially for tube and bubbles, are
different. In the cases of the “full calculation”, the cell radii of “tube” and “bubble” structures and
that of “slab” structure get larger with increase of density, while they are monotonically decreasing
in the case of “no Coulomb” calculation. The other effect is a difference in the density range for
each pasta structure. The “full” treatment of the Coulomb interaction slightly increases the region
of the nuclear pasta.

We show the same comparison for kaonic pasta structure in Fig. 6. We see again that the
density range of the mixed phase is narrower in the case of the “no Coulomb” calculation than in
the full calculation, while the energy gain is almost the same. A remarkable difference is seen in
the cell size, especially near the onset density of kaonic pastas, for ρB < 0.5 fm−3. The cell size
given by the full calculation is always larger than that given by the “no Coulomb” calculation.

To elucidate the screening effect, we depict the Rcell dependence of the energy per nucleon in
Fig. 7. In a general case of 3D droplet the Coulomb energy per particle depends on the radius by
its square, while the surface energy per particle by its inverse. Therefore the sum of the Coulomb
and surface energy has a U-shape (cf. “no Coulomb”) and has a minimum at a certain radius. If the
Coulomb interaction is screened, the Coulomb part will be suppressed (cf. the full calculation) and
the minimum point gets larger. Since the cell radius is approximately proportional to the droplet
radius for a given baryon density, the above argument applies also to the cell size.

For a long time there existed a naive view that not all the Gibbs conditions can be satisfied in
a description by the Maxwell construction if there are two or more independent chemical compo-
nents [4, 5, 6, 7], because the local charge neutrality is implicitly assumed in it. As the result of this
argument, it was suggested that a broad region of structured mixed phase may appear in neutron
stars. However, in recent papers [8, 9, 10, 11, 12] we have demonstrated that if one properly in-
cludes the Coulomb interaction, the Maxwell construction practically satisfies the Gibbs conditions
and the range of the mixed phase will be limited.

We present in Fig. 8 the pressure as a function of the baryon-number density. We also depict
the pressure when the Gibbs conditions are applied for two semi-infinite matters disregarding the
Coulomb interaction (indicated by “Gibbs”) and that given by the Maxwell construction (indicated

8024/8

P
o
S
(
J
H
W
2
0
0
5
)
0
2
4



Coulomb and surface effects on the pasta structure in nuclear matter Toshiki Maruyama

0.0

0.5

1.0

1.5

ρ[
fm

−3
]

full calculation

p
n
e
K

3D,  ρB=0.45 fm−3

0.0

0.5

1.0

1.5

ρ[
fm

−3
] 2D,  ρB=0.55 fm−3

0 5 10 15
r [fm]

0.0

0.5

1.0

1.5

ρ[
fm

−3
] 1D,  ρB=0.60 fm−3

0.0

0.5

1.0

1.5
no Coulomb

3D,  ρB=0.45 fm−3

0.0

0.5

1.0

1.5 2D,  ρB=0.55 fm−3

0 5 10 15
r [fm]

0.0

0.5

1.0

1.5 1D,  ρB=0.60 fm−3

Figure 9: Comparison of density profiles of kaonic matter in
full and “no Coulomb” calculations. The cell size, R cell =

17 fm, is not optimized since the optimum values would be
different for different calculations.
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Figure 10: Mass number A depen-
dence of the binding energy of finite
nuclei without the Coulomb interac-
tion. Thick gray line shows the case
of nuclear matter.

by “Maxwell”). We see that the pieces of solid curves lie between “Gibbs” and “Maxwell”. The full
calculation case is more similar to the one given by the Maxwell construction. In Fig. 9 compared
are the density profiles obtained by the full and “no Coulomb” calculations. In case of the full
calculation the difference between the negative charge density (of kaons and electrons) and the
positive charge density of protons is smaller, indicating that the system tends to have a local charge
neutrality. These results suggest that the Maxwell construction is effectively justified in the full
calculation owing to the charge screening effects.

5. Surface effects

If we artificially multiply meson masses mσ , mω and mρ by a factor cM , e.g. cM = 1 (realistic
case), 2.5 and 5.0, the surface tension changes. Figure 10 demonstrates the binding energies of fi-
nite nuclei calculated with different meson masses. By the use of heavy meson masses, the binding
energy of finite nuclei (for finite A) approaches to that of nuclear matter indicated by a thick gray
line. This shows that the surface tension is reduced with increase of the meson masses, cf. [13].
Notice that this statement is correct only if we fix the ratio g2

φN/m2
φ .

Using the above modified meson masses, we explore the effects of surface tension in the
following. Right panels of Figs. 5 and 6 are EOS and the cell and structure sizes, but now for the
case of an artificially suppressed surface tension (cM = 5.0). Comparing them with the left panels,
we see that there is almost no difference in the EOS. However, there are two differences in the
case of low-density nuclear matter. First, the density range of pasta structure is slightly broader
for weaker surface tension. Secondly, the cell size with a normal surface tension is larger than the
case of weaker one. It means that weaker surface tension and stronger Coulomb repulsion cause
the similar effects on the cell size since the pasta structure is realized by the balance of the both.

In the case of kaonic pasta, the meson masses have very small effects. The σ , ω and ρ mesons
have less contribution to the surface tension of kaonic pasta but K−-N interaction is dominant.

6. Summary

We have discussed two kinds of non-uniform structures in nuclear matter, nuclear pasta at
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subnuclear density and the kaon mixed phase at high density, which may arise as consequences of
the first order phase transitions with many particle species. Based on density functional theory and
relativistic mean-field theory, we took into account the Coulomb interaction in a proper way and
numerically solved coupled equations of motion to extract the density profiles.

In nuclear matter with fixed proton fractions, which is relevant for the supernova explosions
and the newly born neutron stars, we have observed “nuclear pasta” structures. The appearance
of the pasta structures significantly lowers the energy, i.e. softens the equation of state, while the
energy differences between various geometrical structures are rather small.

By comparing different treatments of the Coulomb interaction, we have seen that the self-
consistent inclusion of the Coulomb interaction changes the phase diagram and the size of pasta
structures. In particular the region of pasta structure is broader for “full” calculation compared to
that with simplified treatments of the Coulomb interaction used in the previous studies. In the full
calculation, the Coulomb screening (rearrangement of the charge distribution) lowers the energy
and consequently enlarges the structure. We have also investigated the effects of surface tension
caused by the gradient terms of σ , ω and ρ mesons. By changing the contribution of these gradient
terms, we have found that weaker surface tension and stronger Coulomb repulsion have the similar
effects on the pasta structure.

Around the critical density of kaon condensation we have observed “kaonic pasta” similar to
“nuclear pasta”. The effects of the charge screening was found to be similar to those for nuclear
pasta at low densities. Besides, the system tends to be local charge neutral and the Maxwell con-
struction is effectively valid for the description of the mixed phases. The effects of σ , ω and ρ
mesons for the surface tension, however, was found to be small. Instead, the attraction between
kaon and nucleon is dominant for the surface tension.
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