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1. Introduction

The pressure of hot QCDgcp, constituting one of the most fundamental thermodynamic
observables, has been under theoretical study for several decades now. Being of fundamental im-
portance to cosmology (due to its influence on the cooling rate of the early universe) as well as
of potential relevance to heavy ion collisions (through its influence on the thermodynamic expan-
sion rate),pocp has been computed using a variety of methods, including lattice Monte-Carlo,
weak-coupling and largsk-methods, to name a few.

Although at large temperatur&ls asymptotic freedom leads to the expectation that weak-
coupling methods are sufficient to accurately describe the deconfined phase, it is well known that
the infrared (IR) sector of QCD produces a challenge for perturbation theory, which for the case of
the pressure arises at ordgi [1].

It has however been realized that this challenge can be overcome in an effective theory setup,
where the problematic sector is described by a dimensionally reduced ttgoryHe key ob-
servation is that thermal (equilibrium) QCD possesses three distinct physical scales, two of them
generated dynamically. The contributions to the pressure (and to any other thermodynamic observ-
able) from each of these scales can be obtained from carefully constructing and matching a series
of effective theories (for details, see e.8, 4]).

The theories under consideration are (hard) QCD, electrostatic QCD (EQCD) and magneto-
static QCD (MQCD), governing physics on length scal¢$ {the typical scale for a particle in
the heat-bath), igT (the dynamically generated screening length for longitudinal gluonic excita-
tions) and ¥g’T (the dynamically generated screening length for transverse gluonic excitations),
respectively. While the first two are amenable to perturbative calculations, MQCD is purely non-
perturbative and has to be treated on the lattice. Viewing the gauge cogflings parametrically
small (which is certainly justified at asymptotically high temperatures), these three scales are well
separated, and can hence be dealt with individually via the effective theory setup. Schematically,
for the pressure one can wrif®cp = Pe + pmw + Ps, Where each contribution depends on the
matching scales. This scale-dependence will cancel in the sum, rengeydaga well-defined
physical observable.

In this letter, we will give a somewhat condensed account of what we currently know about
the different contributions tpocp.

2. Status of the QCD pressure

Below, we specify the contributions to thS pressureqcp = pc + pm + Pe [3] from each
physical scale individually, for the case of gauge groupMEV&ndN; quark flavors. We will work
at zero quark masses; = 0 and vanishing chemical potentialg = 0, and display all dependence
on theMS scaleu? = 4re *u? by L = In ;2. Effects due to finite quark masses p] and
chemical potentials/] are available in the literature, but will not be discussed here.

2.1 Contributions from the ultra-soft scale g?T, i.e. from MQCD

Ultra-soft physics is not accessible by perturbative methods, due to the unscreened transverse
gluonic sector, which would lead to severe infrared probletis This sector is governed by a
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three-dimensional pure gauge theory. Its only parameter is the dimensionful 3d gauge cggypling

2

which we write ag?; = 1'\:;%“4 The screening length gets generated non-perturbatively, making a
numerical lattice Monte-Carlo treatment necessary. The detailed setup for how to incorporate the
ultra-soft contribution into the physical pressure by a carefully defined mixture of perturbative and

non-perturbative coefficients is explained in detail in R&f. The result is

Pe(T) 244 1 N? 1
= dal167°T 8 — 4+ L+ 1 -
% 7T g,\,I oG 8¢ +L+In @, +1)+ 3

+ [pert] — [nspf + [non-pert] + ﬁ(e)] \ (2.1)

whereda = N;2 — 1, andag = g—g — %ﬂ:z [4, 8] is a perturbative 4-loop coefficient. The three
coefficients enclosed in square brackets originate from measuring the 3d YM pressure on the lattice
and matching the result to théS scheme. To be more precise, they are the following.

e The first number stems from a non-perturbative lattice Monte-Carlo measurement of the 3d
plaquette in pure SUW) theory P,

[non-pert] = S(:II\)l ﬁﬁw{ﬂ4< ’\}CTrP> —[01[33+02[32+03[3+c4ln[3}} (2.2)

wheref = ;Nc denotes the dimensionless lattice coupling, and are divergences of the 3d
lattice- regularlzed plaquette which can be computed in lattice perturbation theory. They read

da
cL = 3 (2.3)
dA 87'[
C = (47r)2< g 525449\, ) , (2.4)
C3 = da ([0.049789441)] + [—0.042894647)]N;* + [0.01473973)|N.*) (2.5)
— 6.86122) atN.=3,
o dANc6
C4 - W64a(5 . (26)

The number irc; is a sum of typical 2-loop (infinite—volume) lattice integral$[9],

2 (32 n? 2
-z ( s By 3K5) ~ 5.25449, (2.7)
with (K is the complete elliptic integral of first kind} [, 12, 9]
1 /7 1
£ [ dxo (2.:8)
72 Jo 3 i SINPx;

_ ;<18+ 12{2_10\/5—7\/6) Kz((z_\@)z(\fg_ﬁ)Z) ~ 3.1759114, (2.9)

_ 1 2 g s 3.1 Sin i Sin (% + i) ~
7 4 /n/zd xd yzisinzxi i SiN?(% +Yi) 3 Sinfy; ~ 0.9583821), (2.10)

i /2 3 3 zisinzxisinz(xi +yi)sin2(yi)
w4 /—7‘[/2d xd yzi Sirx; 3 Sirf(x 4+ i) 3 Sirfyi

K =

~ 1.0130411) . (2.11)
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The coefficientc; has been estimated by numerical stochastic perturbation theory (NSPT) for
Ne = 3 [13] and, with higher numerical accuracy and fl dependence, computed from 3-loop
diagrams in lattice perturbation theor¥4]. In principle, it would be nice to know the ful-
dependence of Eq2(2).

e The second number stems from an estimation of (the sum of all) 4-loop vacuum diagrams in
lattice perturbation theory by NSPTH], with the IR divergence regulated by massive gluon- and
ghost-propagators (mass teﬁglquz andmrPcein the action) L6]. NSPT works on a finite lattice of
volume(aL)3, so the infinite—volume limit has to be taken first to ensure that the IR is regulated by
the mass term only. A very preliminary result #s/]

4
[nspt] = (47) s lim_lim <1—1TrP> —c4lni (2.12)
8daN:° am—0L—w Ne am! 3 4 term am
47)4
— 8(d|\)16 o+ CaNe? + SNt + 4N
AlNc

~4—n430 in Feynman gauge & = 3
~ 729 y gauge e ==<.

To match the precision obtained fpron-pert], this number should be estimated with at least 2%
accuracy. It would be nice to know all four coefficients, in Feynman gauge, either by a direct
diagrammatic evaluation, or by doing NSPT for (at least) four different valubls.of

e The third number stems from a matching 4-loop computation in(8re2¢e)d continuum
theory, regulated in the IR by gluon- and ghost-masses, with gauge pardmeBauge depen-
dence, introduced by the IR regulator, is guaranteed to cancel against thapin The result
reads

. 1.\*
3 [4loop YM vac diags = g°daNc’ (mJ> {% + [pert] + ﬁ’(s)} (2.13)
whereJ is the 1-loop massive tadpole integ[fgll/(p2 +m?). We choose Feynman gauge= 1
which here leads to modified propagatoypi — 1/(p?+ m?), and obtain 1§]
[pert] = —3.73134481146281478501 in Feynman gauge (2.14)

where the number can be expressed in terms of 18 fully massive 4-loop scalar master integrals
[19, 20]. For generak, we would have to calculate vacuum diagrams with two mass saafes (
andén), which presently is beyond our computational capabilities.

The matching condition for the 3d gauge coupling reads?2, 23

A A NPYX) ~ ~2 7 (2
g NG o, 1@ 176 2-n @A -1’
M~ 16z2T 5|7 12/e 288/2 24 AR 24 e

E ,
1

wheren'= % For theg® pressure, only the leading coefficient is relevant.
2.2 Contributions from the soft scalegT, i.e. from EQCD

Soft-scale physics is governed by a three-dimensional gauge theory, coupled to an adjoint
Higgs field. This adjoint Higgs theory possesses a small number of dimensionful coupling con-
stants, which are related to the parameters of full QCD (bgfnand T) by the equations given
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below. The contribution of this sector to the pressure is given by

pm(T)
u*ZS

= dal672T? {r‘n?E’ B - ﬁ(e)}

+ @ [_418+(—L+llnr?%+ln2—i)+ﬁ(8)}

N gng[ —23—”62+161| 2)+ﬁ(s)]

+ [ < +8L—4Inifg — 8|n2>+ﬁM+ﬁ’( )]
)

+ Mg ﬁ;2+ﬁ(8)}+AE ﬁé[l 43n+6"(8)]

+ oGt Ae) }, (2.16)
with the 4-loop coefficientem = 53 — g2, fu = — et — 33 In2— ¥ In?2+ JSra? — Blr2in2+

1571923 (3) + 110 = —1.391512 p4], whereyig is the leading coefficient of a finite 3d scalar 4-loop

integral that is known numerically only2{y,

4 2 B B dBxg dPxy 1 1
N0 = (47) / 3 93 (973 (973 2 2 X

—w (2m)3 (27)3 (27)3 (27)3 (X1 —X3)? (X2 — X3)
2l 21 1 ; 1 i 1 i (2.17)

X+1x54+1 (X1 —%X4)?+1 (X2 —%4)?+1 (x3—x4)2+ 1
= 0.17100700975Q) , (2.18)

and the matching parameters até,[3]
22 (MEN2  orn ~ ~ 2

8= (;=) = 6 et (2diea + des) £+ (€7 (2.19)

+ @4 [<ZI§O&E4I— + 55E6> + (6[’3\056E4L2 -+ Bélé)l- + BEZ)E + ﬁ(ez)} + ﬁ(@ﬁ) ,

R NegZ 2 A - ~ - ~ ~
2 CYE _ A2 4 2 2
Gt = 1527 = 9 6 [(2ﬁo|-+ OCE?) + (2BoL" + 207l + Pes)e + O'(e )}
+ 6° 48317+ 2 (Bu+ 2odier ) L+ Fea + 0(e)| + 0(6%)., (2.20)
24 (1)
51 _ Ne Ael ~6
(2)
502 _ NeAg” 4[4, 6
A = 16027 = g [3(1 z)+ﬁ(8)} +0(§°), (2.22)
where we have used the beta-function coefficigats: 1z 3 — Q07— 7z and, for brevity,
setz= N¢/N.. The coefficients read|[ 25, 26]
Gea = 227, (2.23)
Ges — 20gaZs + g(l— 2In2) (2.24)
O = %5654(6B0’)/0+5+22— 8zIn2) — %ﬁ , (2.25)
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1
Og7 = Zﬁo’}/o—i- 3 — gzInZ (2.26)

as wellasP7, 23]

1
+5(20+292+ 27%)

- 22(ﬁ+3|n2)—gzzln2, (2.27)

ﬁé? — 4Bodea(2)0+Z1)

L 1. 2. .
Pe2 = 7 Podtea (+7°—16n)+ §aE421(6ﬁoYo +5+22-8zIn2)

2 2
4 (54102~ (194 22)2In2) + = + = (7+6In2— 161P2)

9 9" 18

+ 292(1—2|n2+4|n22)—éﬁ(3+6yo+621+ 10In2), (2.28)

Bes = <’f —4y1> Bo+ %yo—gln 2(In2+2y)z, (2.29)
fer = 2Puto+ 6+ oo~ 2(3)

_ 3(43+24In2+55( ))—1—2n(23+80In2— 14£(3)) | (2.30)

where they, are expansion coefficients of the Zeta functifil — ¢) = —% +Sno f]—r,] Th (note that
% = 1 = 0.577216). For th@P pressure, thg®terms of Eq. 2.20) are irrelevant.

2.3 Contributions from the hard scale2xzT, i.e. from thermal QCD

Hard-scale physics can be treated perturbatively in naive thermal QCD, meaning agimple
expansion, without the need for resummations, thermal masses, or hard thermal loops. This is
due to all IR effects being properly incorporated into EQCD and MQCD, and is one of the main
conceptual advantages of using the effective theory setup. The contribution to the pressure from
hard momentum scales reads

pE( ) 2-al 1
% = dal6r“T 167 de1+ 6° [0e2+ O (€)]

|~ 180 - A o
+ g“ [0654 + (180- 60E4 + 2Po0E2)L + O3+ ﬁ(s)]

(div)
v [BEl +/351 24 BYL+ Ber+ O(e)

+ ﬁ’(@S)} , (2.31)

with ideal-gas coefficienfie; = 1+ 72, éeo = —2(4+ 52) [28, 29] and, writingZ; = CC(( )) and

_ (-3
Z3= 43,130
N N 116, 220, 38,
06E3:180(06E4)2}’o+5[<5 ?21—3 >
1121 157 146
5 e N2z
2( 60 5 ! >
Z/1 88 16 8 105
N2+ 7, — 27 ) + 2 ==~ 24In2 2.32
+4<3 5 3133>+4<4 )} (232)
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and unknown coefficient8g1, which can be determined e.g. by a 4-loop computation of vacuum
diagrams in thermal QCD. Sing®cp is physical, the divergent and scale-dependent paifis of

are related to the other coefficients introduced in the above, serving as a valuable check on this
open computation. Specifically, from 2-loop running of the 4d gauge coupling

2 Ne@P(H) o= a—, o2 6/ =\(1R22 _oR
0= gz = 9 (ko) +G"(Ho)(~2Pol) +G"(1o) (4B " — 2P1t) , (2.33)
wheref = In qu =L—In %, one can already fix
~éciiv) = 180 [4305‘E4L + Qe+ Opale7 — 4(0G + am )} ) (2.34)
~ 2 ~ . -
P = 180[28300654} +4pgoe (2.35)

Béli) = 180 [45656 + 80E40E7 — 2[}05“5 —32(0G + o) + Béé)}
+ 2P1iea+ 4odes 2.36

The remaining;e—coefficient,BEl however, entails a four-loop computation of all connected vac-
uum diagrams involving quarks, gluons and ghosts, a computation that has so far not been tackled
due to the formidable task of solving many genuine 4-loop sum-integrals. From diagrammatic
arguments, it is clearly a polynomial = N /N,

Per=to+ 2 + P+ s, (2:37)
and we will in the following indicate how two of its coefficients (the first and last) can be crudely

estimated numerically already.

3. Putting everything together

Expanding ing, all poles cancel, as they should. In practice we make use of £4$),(2.19
and Q.20 to re-expand all terms with a factoyd or L in Egs. @.1) and @.16) in terms ofg?.
After cancellation of the poles (and taking into account terms:}ike), we can now take the limit
€ — 0in Egs. .19, (2.20, whence

8 = Géiea+ " [2Pobied + o] + 0(6%), (32)
G2 = G+ | 2Bl + Ger| +6° [4BEL2 + 2 (Ba+ 2Podler) L+ e | +0(6).  (B2)

Collecting explicit logarithmd., they precisely cancel the scale dependencg?afp’to the
order of the computation, and can hence be absorbed by writing

§ = 6% +G"2BoL + 68 (4BEL2 +2BiL) + O (§°) . (3.3)

Note that this coupling is explicitly scale independent to the order we are woﬂp,'gr,)ggﬁz = 0(0).
We now have the full pressure as a sum of its ultra-soft, soft and hard parts as

R ~ 1
Pocp = dAﬂ2T4{16pus+ 16ps + 45Dh} : (3.4)
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Figure 1: Left panel: The normalized QCD pressum®cp/psg at Ny = 0 plotted versus the effective
couplingg from Eq. 8.3). Thed® coefficient depends on an unknown paramétes defined in Eq.3.9),
and the different curves correspond to chooginrg —2000 (lowest curve) td = +12000, in steps of 2000.
Left panel: The same, plotted versus{n The black dots correspond to lattice data frad] [

. . N2 1
Pus = g& [Sae (In 747:5@ + 1) + 3 + [pert] — [nspt] + [non-pert]] , (3.5)
. 1l . 3 A 89 72 11

A . 2o N—2 202 .,1-30
+ 02 (B — 8o In(20fe)| + A M= + A7 == (3.6)

4
P = b1+ GPoe2 + G [Ges — 1800¢s) + §° fBe1— 180<BE2 + GeaPes+ &ES&EY)} .(3.7)

Theg® coefficient ofpocp hence depends on a constant
A = Pe1 £ 7208p + 384.8268\sp T, (3.8)

where we recall tha(EEl stands for the result of the open 4-loop computation, and therameter-

ize the error-bars of the numerical constants from E8,4.13 as[10.7 & dnp] and[30+ dnsp1l,
respectively. Assuming that the NSPT computation will finally have an error-bar of about 2%,
which is comparable in precision to the lattice error-Bas = 0.4, A = BEli 600. In the follow-

ing, we will for simplicity setdnp = dnspr= 0, remembering the induced error-bar[ém_. Using

the same coupling as o, the above matching conditions now read

M = §Poeat §ioes+ 0(6°), (3.9)
62 = §+§'aer+ 1+ 08, (3.10)
W = gat o), (3.11)
X 4
A2 = '5(1-2 +0(&). (3.12)

We would now like to plot the result fopgcp. Identifying the non-interacting (ideal-gas;
.. 47172 ~ . .
Stefan-Boltzmann) limit apsg = daT* 7z &e1, we could display the normalized presspegep/ pss
as a function of the coupling, for fixedN;. This is done in the left panel of Fid, atN; = 0 and for
variousA. Our goal, however, should be to try to make contact to existing lattice determinations of
the full pressure, where typicallyocp/ psg is given as a function of /Tc. Note that continuum-
extrapolated lattice data exist fily = 0 only, so in the following we will restrict to this special case.
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Figure 2: Left panel: The two real branches &¥(z) vs z. The upper (dashed) branchWg(z), the lower
(solid) branch i8\_1(z). Right panel:The effective coupling from Eq. 3.3) plotted versus I%, using the
choices explained in Se8. The upper/lower curve corresponds to the uncertainty in scale choice stemming
from fixing 1 and determinindc/Ays with (8, 6r.) = (2.0,0.9)/(0.8,1.1), the bigger effect coming from

the latter parameter.

Aiming for this rather phenomenological comparison, we evidently need to make some choices,
specified below.
We use the running 4d coupling from the exact solution of the 2-loop RGE equation,

— —Bo/Br

G = B3 B} 4T '
_ P _1_9oP 4zT
1+W_1< 5 exp[ 1 2131 (L+InAMS)D

(3.13)

Here,W_1(2) is one of the two real branches of the Lambert W function (see 8&japd the left
panel of Fig.2; W(z) is the function that satisfie&/ exqW) = z). Note that the above solution
entails two choices: The branch of tié-function and the constant were chosen in accord with
asymptotic freedom (note that the argument of A0~ for u — o) and the ‘usual’ definition of
Ny (being the absence of & [h? i term in the asymptotic expansion @ffil) at largejr).

Although in principle all dependence on the renormalization sgalentering through., is
of higher order, in practice we need to fix it once we need numerical values for the cogpling ~
Following [23], we choose the scale by the principle of minimal sensitivity applied to the 1-loop
result forgg, and then estimate the scale-dependence by a variation of a faaipr=0f0.8..2.0]
around thisttopt, ObtainingL = —%‘% +In ,u%pt The slightly asymmetric choice &, here reflects

the fact that the 1-loogZfalls off more steeply on one side of the plateau than the other.

To compare with continuum-extrapolated lattice d&H,[we use,\Th%S = 1.2267, wheredr, =
[0.9..1.1] encompasses the central values and error bars of estimates of this quantity from different
lattice collaborations (for a summary of the different methods and results23ge This would
translate into a horizontal error bar for the lattice data when plotted adaingjs.

In the right panel of Fig2, we have plotted the effective coupliggad defined in Eq.3.3),
converted to a function of I‘% Note that its value is smaller tharm2Ceven afl..

The normalized pressuig,cp/ pss, converted to a function of I% along the lines above, is
displayed in the right panel of Fig. For comparison, the continuum-extrapolated lattice data of
Ref. [31] has been included as black dots. The figure suggests a value fidy $h8 coefficient of

the unknown constarﬁEl, #y ~ 8500+ 600, bearing in mind the error bar defined in E}8].
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4. Discussion

We have currently no idea what the 4-loop hard-scale coeﬁiﬁ@pits, even though it can be
computed diagrammatically. As already mentioned above, it should be a polynormiali/Nc,
Be1 = #o + 2t + Z2#, + Z3#s, where only a single (ring) diagram contributes p ¢tiggesting it as
the first test-case for 4-loop sum-integral technology.

It seems possible to give an estimate of the highgstentribution '[OBE1 from the largeN;
solution for the pressure, since terms of org’® originate from the hard-scale pressygeonly.
Indeed, in B3] this was attempted by fitting the numerically known exact laxg@ressure with
a polynomial ing. This results in #= ;5[+20(2)] — 2In2(1+ 12y — 3¢In2+ 162, — 8Z3) ~
[+36(1)], where the terms proportional to In2 originate from translating the choice of renormal-
ization scaleu = 7T of [33] to our definition ofﬁEl, where powers of = In ;2= were subtracted
out.

Furthermore, fitting the fulg® pressure aly = 0 andN, = 3 to lattice data aroundT4 [31]
suggests a valuep# = 8500+ 600, if one takes the conjecture for granted that all higher-order
corrections sum up to a subdominant contribution. There is no guarantee whatsoever that this
conjecture holds, making a perturbative computation of thenévoidable. We take the above
check against the lattice data as indication that the effective theory setup has a chance to analytically.
describe the transition from temperatures as low as a few flgiesinfinite temperatures, in terms
of computable corrections to the ideal-gas limit.
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