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1. Introduction

Nowadays the phase diagram of QCD in the temperature (T )-density (ρ) plane has been ex-
plored by many people. Here we are concentrated on the magnetic aspect of quark matter [1]. In
Fig. 1 we depict some magnetic phases in QCD: it is well-known that pion condensation (PIC) ex-
hibits a specific magnetic property in hadron matter [2], and we may expect ferromagnetism (FM)
[3] and spin density wave (SDW) [4] in quark matter, while their properties have not been well
understood.

Figure 1: Phase diagram in the temperature-density plane.

Our interest on the magnetic properties of quark matter has been stimulated by recent discovery
of magnetars, which have the huge magnetic field of O(1015)G [5]. They have been first discovered
by the P− Ṗ diagram (Fig. 2); assuming the dipole radiation for pulsars we can estimate their ages
and magnetic field strength by observing their periods (P) and its time derivatives (Ṗ). Then we
can see three groups of pulsars in the P− Ṗ plane with different ages and magnetic field strength
B. Besides the usual radio pulsars with B = O(1012)G and the millisecond pulsars with B = 109G,
we can see a new class of pulsars with B = 1015G. Recently, some cyclotron absorption lines
have been observed in some magneters, which may also suggest the huge magnetic field of 1015G.
Unfortunately there is still ambiguity about identification of particles responsible to the absorption
lines, but if they are confirmed they give a direct evidence of the huge magnetic field.

The origin of such strong magnetic fields has been a long standing problem since the first
discovery of a pulsar in early seventies. A naive working hypothesis tells that the strong magnetic
field in pulsars are generated by squeezing the magnetic flux during the stellar evolution from the
main sequence stars. This hypothesis looks to work well for usual radio pulsars with the radius
R = 10km, by taking the sun with R = 1010cm and B = 103G as a typical main-sequence star.
However, it may break down once we try to explain the magnetic field of 1015G for magnetars: the
radius of a magnetatr has to be O(100m), which is much shorter than the Schwartzschild radius of
O(1km) for a canonical mass of O(1M�). Thus the discovery of magnetars looks to give a chance
to reconsider the origin of magnetic field in compact stars.

It would be interesting to consider a microscopic origin, since there are widely developed
hadron matter inside compact stars and the strong-interaction energy scale of O(1MeV) is rather
large in comparison with the magnetic interaction energy Eint = µB with the magnetic moment
µ even for B = 1015G. 1 The spontaneous spin polarization or ferromagnetism is a candidate in

1In a recent paper, Makishima also suggested a hadronic origin of the magnetic field for binary X-ray pulsars [7].
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Figure 2: P− Ṗ diagram for pulsars, taken from a review article[6].

hadron matter. There have been repeatedly done many calculations of the polarized nuclear matter
with realistic nuclear forces, but they have always given negative results (see recent results [8]).
These results look rather robust and we may not expect spontaneous spin polarization in nuclear
matter. In the following we shall consider a possibility of ferromagnetism in quark matter.

2. Ferromagnetism in quark matter

We discuss a possibility of ferromagnetism in quark matter in analogy with the itinerant elec-
tron gas [3]. For ferromagnetism of itinerant electrons, Bloch suggested a mechanism where the
Fock exchange interaction induces spontaneous spin polarization [9]. Consider the spin polar-
ized electron gas interacting by the Coulomb interaction in the background of positively charged
ions. Since the direct interaction gives no contribution due to the charge neutrality, the Fock ex-
change interaction gives the leading contribution as the interaction energy. It favors spin align-
ment to effectively avoid the Coulomb repulsion due to the Pauli principle, while the kinetic en-
ergy is increased due consequently. Hence, if the interaction effect exceeds the kinetic energy
increase, we can expect spontaneous ferromagnetism. Recently his idea has been positively proved
experimentally[10]. Then one may ask whether the similar mechanism also works for quark matter.

2.1 One-gluon exchange (OGE) interaction

We begin with an OGE action:

Iint = −g2 1
2

∫

d4x
∫

d4y

[

ψ̄(x)γ µ λa

2
ψ(x)

]

Dµν(x,y)

[

ψ̄(y)γν λa

2
ψ(y)

]

, (2.1)

where Dµν denotes the gluon propagator.
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Consider a free quark with momentum k. Since the spin operator Σ is not commutable with
the Dirac operator HD = k/−m, we first have to define spin polarization in a covariant way. We
can do this by using the Pauli-Lubanski vector W µ , W µ = −1/4εµνρσ kνσ ρσ , for a particle with
momentum k and the spin vector aµ ; the former is a generalization of the Pauli matrix σ and the
latter is a generalization of the quantization axis ζ in non-relativistic theories. For any space-like
vector aµ satisfying two constraints,

a · k = 0,a2 = −1, (2.2)

we can define the projection operator P(a) on each spin polarization ζ = ±1,

P(a) = (1+ γ5a/)/2. (2.3)

We can easily see that [P(a),HD] = 0 and P2 = P. Thus we can construct the eigen-spinor u(ζ )(k)
s.t. P(a)u(ζ )(k)= ζu(ζ )(k) with ζ =±1, which is simultaneously the energy eigenstate, Hfreeu(ζ )(k)=

Eku(ζ )(k) with Hfree = α ·k+βm and Ek =
√

m2 +k2. As a consequence of this definition, we are
aware of many choices of the spin vector to describe spin polarization in the relativistic way. Here
we restrict ourselves to a class of the spin vectors, which is reduced to ζ in the rest frame of each
particle. Thus we specify two degrees of freedom of spin polarization by using a vector ζ . There is
no way to determine the relevant one a priori. The most favorable form of the spin vector over all
the particles should be determined by the energy principle, but it would be very difficult to solve it
in a general way. Instead, we can assume some forms by physical considerations. A general form
of aµ can be written as

aµ(k) = c1(k
2,(k ·ζ )2,n · k)(k ·ζ )kµ + c2(k

2,(k ·ζ )2,n · k)ζ µ + c3(k
2,(k ·ζ )2,n · k)(k ·ζ )nµ (2.4)

where ζ µ = (0,ζ ) and nµ = (1,0). The coefficient functions ci should be determined under the
constraints (2.2). We, hereafter, consider two special forms: one is

a0 =
k ·ζ

m
,a = ζ +

k(ζ ·k)

m(Ek +m)
, (2.5)

and the other is

a0 =
Ek(ζ ·k)

m
√

(ζ ·k)2 +m2
,a =

m2ζ +(ζ ·k)k

m
√

(ζ ·k)2 +m2
. (2.6)

The first one is given by the Lorentz transformation from the rest frame, and the second one max-
imizes the mean-value of the spin operator [11]. We can see that the maximal-spin choice (2.6)
plays an important role for the effective zero-range interaction [11].

With the spin vector thus defined, we can write down the OGE interaction. Since quark mat-
ter is color neutral, only the Fock exchange interaction gives a leading order contribution in the
Feynman gauge,

f Fock
k,ζ ;q,ζ ′ ≡ 1

N2
c

1
N f

∑
c,d

f
k,ζ ,c;q,ζ ′

,d

= g2 N2
c −1

4N2
c N f EkEq

[
2m2 − k ·q−m2a ·b

] 1
(k−q)2 , (2.7)
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where Nc and N f denotes the number of colors and flavors,respectively, and f
k,ζ ,c,i;q,ζ ′

,d, j
= δi j f

k,ζ ,c;q,ζ ′
,d

indicates the interaction between two quarks with momenta k and q, spins ζ and ζ ′, colors c and
d and flavors i and j. Note that the spin dependent term described by a · b in Eq. (2.7) implies
that the interaction in the axial-vector channel is responsible to the spin polarization (c.f. §2.2).
It implicitly depends on the vectors ζ ,ζ ′, and its form is given by the definite choice of the spin
vector. On the other hand, we can easily see that the Fock exchange interaction is reduced to the
simple form,

f Fock
k,ζ ;q,ζ ′ = −g2 N2

c −1
4N2

c N f

1+ζ ·ζ ′

|k−q|2 (2.8)

in the non-relativistic limit for any choice of the spin vector.
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Figure 3: Total energy is given as a function of the
polarization parameter p = (n+−n−)/2nq.
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Figure 4: Critical lines as functions of quark-number
density.

Then, the total energy of quark matter εtot is given as a function of the polarization parameter
p = (n+ − n−)/2nq with particle numbers n± for different polarizations. In Figs. 3 and 4 we
demonstrate some results for the standard spin configuration (2.5) by using the MIT bag model
parameters. Fig. 3 clearly shows the first order phase transition at low densities. Interestingly we
can see a metamagnetic state even in the paramagnetic phase. The critical lines are depicted in
Fig. 4 as the functions of density: δε denote the energy difference between p = 0 and p = 1 cases,
and χ is inversely proportional to magnetic susceptibility s.t. δε = χ−1 p2 +O(p4), which specifies
the second order phase transition. Then the negative region of δε or χ indicates ferromagnetism.
We can see that the critical densities given by both lines result in the similar value to each other,
which implies the phase transition is weakly first order. The remaining line denoted by η shows
the derivative of εtot at p = 1, η = ∂εtot/∂ p|p=1. Its negative value suggests that the metamagnetic
state exists in a wide density regime.

Here we have discussed only the lowest order contribution, but a recent paper has also suggest
the phase transition at low densities by including the higher-order effects [12].
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2.2 Self-consistent approach

By way of the mean-field approximation, we have the effective action instead of the original
OGE action (2.1),

IMF =

∫
d4 p

(2π)4 ψ̄(p)G−1
A (p)ψ(p). (2.9)

The inverse quark Green function G−1
A (p) involves various self-energy (mean-field) terms, of which

we only keep the color singlet particle-hole mean-field V (p),

GA(p)−1 = p/−m+V (p). (2.10)

Taking into account the lowest diagram, we can then write down the self-consistent equations for
the mean-field, V :

−V (p) = (−ig)2
∫

d4k
i(2π)4 {−iDµν(p− k)}γµ

λα

2
{−iGA(k)}γν

λα

2
︸ ︷︷ ︸

(A)

. (2.11)

Applying the Fierz transformation for the OGE action (2.1) we can see that there appear the
color-singlet scalar, pseudo-scalar, vector and axial-vector self-energies by the Fock exchange in-
teraction. Taking the Feynman gauge for the gluon propagator, some manipulation gives

(A) =
N2

c −1
4N2

c

1
N f

{

Tr(GA)+iγ5Tr(GAiγ5)−
1
2
[γ µTr(GAγµ)+γ5γ µ Tr(GAγ5γµ)]

}

+ {color non−singlet or flavor non−singlet terms}, (2.12)

where we can see the correct prefactor (N2
c − 1)/4N2

c N f (c.f. Eq. (2.7)). When we restrict the
ground state to be an eigenstate with respect to color and flavor, there is only left the first term
which is color singlet and flavor singlet. Still we must take into account various mean-fields in V ,
V = Us + iγ5Ups + γµU µ

v + γµ γ5U
µ
av with the mean-fields Ui. Here we only retain Uav(≡ UA) for

simplicity and suppose that others to be vanished;

V (k) = γγ5 ·UA(k), (2.13)

with the static axial-vector mean-field UA(k).
The poles of GA(p), detG−1

A (p0 + µ=εn)=0, give the single-particle energy spectrum:

εn = ±ε± (2.14)

ε±(p) =

√

p2 +U2
A(p)+m2 ±2

√

m2U2
A(p)+(p ·UA(p))2, (2.15)

where the subscript in εζ (p),ζ = ± represents spin degrees of freedom, and the dissolution of the
degeneracy corresponds to the exchange splitting of different “spin” states; the spectrum is reduced
to a familiar form ε± ∼ m+ p2

2m ±|UA| in the non-relativistic limit. Note that the energy spectrum is
no more rotation symmetric, and thereby Fermi seas are deformed (Fig.5). We have two Fermi seas
with different shapes: the Fermi sea of the majority particle is deformed in the “prolate” shape,
while that of the minority particle in the “oblate” shape [13]. It would be interesting to see that the
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Figure 5: Modification of the Fermi sea as UA(=const.) is increased from left to right. The larger Fermi sea
(F−) takes a prolate shape, while the smaller one (F+) an oblate shape for a given UA. In the large UA limit
(completely polarized case), F+ disappears as in the right panel.

eigenspinors u(ζ )(p), corresponding to εζ , are reduced to those given by the maximal-spin choice
(2.6) in the limit, UA → 0.

If we consider an effective model with the zero-range interaction,

Hint = G2ψ̄γµ γ5ψψ̄γ µγ5ψ , (2.16)

the mean-field UA becomes momentum independent and the self-consistent equation becomes very
simple,

UA = 2G2 ∑
ζ=±1

∫
d3 p

(2π)3 θ(µ − εζ (p))
UA +ζ

√

m2 + p2
z

εζ (p)
+VAC, (2.17)

where “VAC” means the contribution from the Dirac sea. The Dirac sea contribution is obviously
divergent and we have to regularize it in a proper way. Since the energy spectrum have lost rotation
symmetry, the usual momentum cut-off is not relevant. Instead, we must use the one which is not
directly related to the form of the energy spectrum. We have used the proper time regularization
with the cut-off Λ [4]. The critical density is easily obtained from Eq. (2.17). For an infinitesimally
small UA and m/Λ � 1, the critical chemical potential is given as

µc = µF
c Λ/me−γE /2(γE : Euler′s constant), (2.18)

where µF
c is the critical chemical potential given only by the Fermi seas,

µF
c =

m
2

exp

(
4π2

3N f NcG2m2

)

. (2.19)

Here we can clearly see the non-perturbative nature with respect to the coupling constant G and
quark mass m. We can also see that the vacuum contribution works against the spin polarization.
Note that the critical chemical potential given by Eq. (2.18) should be overestimated, since the zero-
range interaction is too simple; n ear the critical point the interaction effectively works only for
particles near the Fermi surface and the vacuum contribution is suppressed by the Pauli principle.

Extension of the framework to the finite temperature case is straightforward. We show the
phase diagram on the temperature-density plane in Fig. 5 for the three-flavor case under two con-
ditions: the chemical equilibrium condition (CEC) µu = µd = µs and the charge neutral condition
without electrons (CNC) ρu = ρd = ρs, where quark masses are taken as mu = md = 5MeV and
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Figure 6: Phase diagram for two cases of strange quark masses, 250,350MeV.

ms = 150− 350MeV, i.e., µs =
√

µ2
u,d +m2

s −m2
u,d for T = 0. In both conditions, since the spin

polarization caused by the axial-vector mean-field is fully enhanced by the quark mass for given
density or temperature, choice of the current quark mass seriously affects the results; especially,
largeness of the strange quark mass has an essential effect on spin polarization.

3. Astrophysical implications

There are two possibilities about the existence of quark matter in compact stars: one is in the
quark stars, which are composed of low density strange matter, and the other is in the core region
of neutron stars, which are called hybrid stars. Consider magnetars as quark stars or hybrid stars.
Then we can easily estimate their magnetic field near the surface, if ferromagnetism is realized in
quark matter. The magnetic field generated on the surface r = R by quark matter with density nQ

can be written as

Bsurface =
3r̂(r̂ ·m)−m

R3 , (3.1)

with the total magnetic moment m,

m =
4πr3

Q

3
M,M = µQẑ, (3.2)

where rQ is the radius of quark lump and µQ the single magnetic moment. We can see then that
he maximum magnitude of Bsurface amounts to O(1015−17)G for nQ = 0.1fm−3, which might be
enough for magnetars.

There may be left an interesting problem about hierarchy of magnetic field in compact stars
(Table 1). However, the idea of ferromagnetism may not be sufficient for explaining it, and we
need the global magnetic structure and some dynamical mechanisms, e.g. formation of magnetic
domain or existence of metamagnetism, besides it.

We might also consider a scenario about the cosmological magnetic field in the galaxies and
extra galaxies. It is well known that magnetic fields are present in all galaxies and galaxy clusters,
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millisecond pulsars usual radio pulsars magnetars

Magnetic field [G] 109 1012 1015

Period [sec] 10−2 100 101

Age [year] 109 106 103

Table 1: Hierarchy of magnetic field in compact stars.

which are characterized by the strength, 10−7 − 10−5G, with the spatial scale, ≤ 1Mpc [14]. The
origin of such magnetic fields is still unknown, but the first magnetic fields may have been created
in the early universe. If magnetized quark lumps are generated during the QCD phase transition,
they can give seed fields.

4. Summary and Concluding remarks

We have discussed a possibility of ferromagnetism in quark matter. The spin configuration in
the relativistic ferromagnetism is not trivial, different from the non-relativistic case, because the
spin operator cannot be commutable with the Dirac operator.

We have seen that ferromagnetism is induced by the one-gluon-exchange interaction at low
densities through the first order phase transition. In the self-consistent treatment with the effective
zero-range interaction ferromagnetism will be developed at high densities through the second order
phase transition. These opposite features are originated from the difference of the interaction range.
One may think ,e.g., the Debye screening in the gluon propagator and the zero-range effective
interaction may be regarded as a limit case, like in the Stoner model. Anyway further study is
needed about the range of the interaction. We may apply the Fermi liquid theory or take the
renormalization group approach to study this problem.

One may wonder the relation of ferromagnetism to color superconductivity, since their possi-
ble density region is overlapped. We have discussed the coexistence of ferromagnetism with color
superconductivity by assuming the P-wave type pairing [13]. We have found that they can coexist
with little interference. However, it is not unique possibility. One may consider other interesting
types of pairing in the ferromagnetic phase.

Besides ferromagnetism, there is another magnetic aspect of quark matter. We may expect spin
density wave at moderate densities, where chiral symmetry is expected to be restored. In the recent
paper we have discussed its possibility to see some region where spin density wave appears [4].
We have also suggested a hadron-quark continuity that magnetic properties in pion condensation
are succeeded by spin density wave in quark matter.

These magnetic aspects should have some implications on compact star phenomena. As an
example, we have suggested a microscopic origin of magnetic field in compact stars by ferromag-
netism of quark matter. We have roughly estimated the strength of the magnetic field in compact
stars by assuming the existence of the core of quark matter, and found that it may give enough
strength even for magnetars. It would be ambitious to explain the hierarchy of the magnetic field
in compact stars by using the idea of ferromagnetism in quark matter.
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