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1. Introduction

In the last years there has been a growing interest in physically based continuum theories of
dislocations. This development has been driven by two problems, namely the explanation of size
effects in small-scale structures and the long-standing question of the mechanisms which govern
dislocation patterning. A continuum treatment of both problems seems only sensible if the con-
tinuum theories are built directly on the discrete unit of plastic deformation, i. e. the dislocation.
An important step towards continuum modelling of interacting dislocation systems was done by
Groma [2], who used the analogy between charged point particles in a plane and straight edge dis-
locations moving on a single slip system. By adopting averaging methods from statistical physics,
Groma arrived at a density-based representation of the dynamics of such systems. After presenting
a mean field theory in the original paper, the treatment was refined in several follow-ups to include
short range interactions, see e. g. [3]. Comparison of discrete dislocation dynamics simulations
and numerical solutions of the density-based dynamical equations demonstrates that the refined
models provide a faithful representation of the discrete dynamics of two-dimensional dislocation
systems, even if nontrivial boundary conditions are imposed [12].

It seems quite promising to use a similar approach to arrive at a continuum description of more
realistic, three-dimensional dislocation systems. The three-dimensional generalization of such the-
ories is, however, a challenging task in view of the line-like character of dislocations which renders
the adoption of methods originally developed for interacting particles somewhat non-trivial. The
most fundamental question in this regard is how to characterize the local dislocation state. The clas-
sical dislocation density tensor does not carry enough information for this purpose as was already
noted by Köner [8]. In the pioneering work of El-Azab [1], thedislocation state was characterized
by direction and velocity-dependent phase space distributions and density functions. However, as
will be explained below, this may lead to a description in terms of unconnected dislocation seg-
ments which represent the evolution of a system of connectedlines only in an incomplete manner.
Nevertheless, the idea of characterizing dislocation configurations in terms of objects defined on
higher-dimensional spaces seems promising. The question is how higher-dimensional extensions of
the classical representation of a three-dimensional dislocation configuration (i.e., the representation
in terms of the dislocation density tensor) may be constructed.

The application of statistical mechanics to two-dimensional systems of straight edge disloca-
tions relies heavily on their equivalence to particle systems in two dimensions. For such systems
it is well known (i) how to treat the point particles as a singular density written in terms ofδ -
distributions, (ii ) how to do averages over the single objects, as well as (iii ) how to handle the
averaged object as a density. In this paper we will mainly be concerned with the question how to
generalize the pertinent concepts and methods to curved lines and their averages. This is most nat-
urally done by using the language of differential forms and currents. As this leads to a formulation
which is independent of the dimension of the underlying space, it also constitutes an ideal starting
point for systematic generalizations as shown in Sections 5and 6.

The idea of applying the language of differential forms to the continuum theory of dislocations
is not new. Already Kröner was aware of the nature of the dislocation density tensor as a differential
form [8]. The language of differential forms may be exploited for purely formal exercises, see e.g.
the formal translation of the classical three dimensional theory to a four dimensional space-time in
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[11]. However, in the following we shall demonstrate that itcan also be used as a powerful tool
for overcoming structural deficiencies of the dislocation density tensor and obtaining an improved
description of dislocation systems.

2. Differential Forms

Differential forms are a standard tool in differential topology and differential geometry. They
are also widely used in different branches of physics, as forexample in Maxwell theory. We will
therefore just give a collection of facts about how to do calculus with differential forms, which turn
vector analysis into a rather algebraic formalism working "automatically". A deeper understanding
of the meaning of differential forms as representations of continuously distributed subspaces (sub-
manifolds) will be addressed in the section on currents.

A very simplified heuristic definition might envisage differential forms of orderp as objects
which may be integrated overp-dimensional spaces. From three-dimensional Maxwell theory we
may take as examples (i) the electric potential which is only meaningfully evaluated at points (zero-
dimensional spaces) and is thus a 0-form, (ii ) the electrical field which may be integrated over lines
as a 1-form, (iii ) the magnetic flux density which may be integrated over surfaces and therefore is
considered as a 2-form and (iv) densities which define 3-forms and can be integrated over volumes.
This is reflected in the spatial part of the physical dimensions of the objects, e. g. in the case above
we have (i) the electric potential[V], (ii ) the electrical field

[

V ·m−1
]

, (iii ) the magnetic flux density
[

Wb·m−2
]

and (iv) the mass-density
[

kg·m−3
]

. Using this as a (very hand-waving) criterion for
the mathematical representation of physical objects, we immediately see that a dislocation density
with dimension

[

1·m−2
]

should be defined as a 2-form.

2.1 Vector fields and differential 1-forms

Although the notions of manifolds, charts, tangent and cotangent bundles are the starting point
of the following calculations, we will not go into any detailbut rather adopt parts of the language
as given. An important concept, however, is the understanding of tangent vectorsX|p (vectors
annexed to a spatial pointp) as acting on functionsf as directional derivative atp by X|p ( f ) =

Xi ∂
∂xi

∣

∣

∣

p
( f ) = X ·∇ f (p). Here and in the following we adopt the Einstein summation convetion for

automatically contracting over pairs of upper and lower indices. The underlying space is considered
n-dimensional and for the above notion it makes no differencewhether we think of it as a general

n-dimensional manifold in a chart or simply ofRn with standard co-ordinates. We consider∂
∂xi

∣

∣

∣

p
as a local basis for tangent vectors and introduce the abbreviate notion∂xi |p for them.

In addition to tangent vectors we also can define co-vectors or 1-forms (sometimes also called
Pfaffian forms) as locally linear mappings from a tangent space to the real numbers. Each 1-form
ω is locally given byn numbersωi (p) (similar to a vector) by settingωi (p) = ω

(

∂xi |p

)

. Formally

we can define a local basisdxi
∣

∣

p for co-tangent vectors by demandingdxi
∣

∣

p

(

∂xi |p

)

= δ i
j , with the

Kronecker indexδ i
j . Then it is obviouslyω = ωidxi . Best known example of 1-forms are those

arising as differentials of a functionf denoted byd f = ∂xi f dxi . They act on a vectorX in a dual
way to the vector acting on the functionf by d f (X) = X i∂xi f .
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Higher-order differential forms

A (differential) p-form is a co-variant tensorA= Ai1···ipdxi1 ⊗·· ·⊗dxip of orderp which obeys
for each permutationπ of orderp the relationA

(

Xπ(1), . . . ,Xπ(p)

)

= signπ A(X1 . . .Xp). Functions
are considered as 0-forms. We define an alternating product∧ of a p-form ω and aq-form θ as the
(p+q)-form given by

ω ∧θ (X1, . . . ,Xp+q) =
1

p!q! ∑
π

signπω ⊗θ
(

Xπ(1), . . . ,Xπ(p+q)

)

. (2.1)

This product is associatve, thus(ω ∧θ)∧η = ω ∧ (θ ∧η), and it holds forω andθ as in (2.1),
ω ∧θ = (−1)pqθ ∧ω . We moreover receive a basis for the space of differentialp-forms from the
alternating productsdxi1 ∧·· ·∧dxip of the basis of 1-formsdxi by requiring the indices to be sorted
by i1 < · · · < ip. Eachp-form ω can then be written asω = ωi1···ipdxi1 ∧ ·· ·∧dxip.

Besides the exterior multiplication of two forms, there is another important algebraic oper-
ation on differential forms, which is the inner multiplication by a vector-fieldX. For eachp-
form ω the inner multiplication withX is the(p− 1)-form iXω defined by iXω (X1, . . . ,Xp−1) =

ω (X,X1, . . . ,Xp−1). In standard tensor notation this is a contraction ofX with the first index ofω .

Calculus on differential forms

Two differential operators on differential forms are of special importance for the following:
the exterior derivatived and the Lie-derivativeL. The exterior derivatived is defined by

dω = dωi1···ip ∧dxi1 ∧ ·· ·∧dxip =
∂ωi1···ip

∂xi dxi ∧dxi1 ∧ ·· ·∧dxip. (2.2)

In standard three-spaced turns out to be the grad-, curl− and div- operator on 0-, 1- and 2-forms,
respectively. As an easy consequence from standard calculus it isd◦d = 0.

As noted in the introduction to this section an important property of differential forms is that
they can be integrated over appropriate sub-spaces. For spatial reasons we can not go in details
about this but only state that on spaces with a standard volume formdV eachn-form can be written
asω = ρdV with a functionρ and can then be integrated like a usual function. In three-space the
standard volume is given in standard co-ordinates asdx1∧dx2∧dx3, which is more conveniently
written asdx1dx2dx3 when used in multiple integrals. The integral theorems of Gauß and Stokes
turn out to be special cases of the generalStokes’ theoremwhich says that for a differential(n−1)-
form on an-dimensional manifoldM with boundary∂M it is

∫

M
dω =

∫

∂M
ω . (2.3)

Stokes theorem together with the fact thatd ≡ 0 onn-forms easily yields theproduct rule
∫

M
dω ∧θ +(−1)p

∫

M
ω ∧dθ =

∫

∂M
ω ∧θ , (2.4)

whereω is a p-form andθ a (n− (p+1))-form.
The Lie-derivative of a differential form in the direction of a vector-fieldX can be defined by

combining the exterior derivative and the inner multiplication as

LXω = d iXω + iX dω . (2.5)
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Similar to the product rule (2.4) we find for the Lie-derivative
∫

M
LXω ∧θ +

∫

M
ω ∧LXθ =

∫

∂M
iX (ω ∧θ) . (2.6)

If a standard volume densitydV is defined on the underlying space (thus eachn-form ω can be
written asω = ρdV), it is possible to define the divergence of a vector-fieldX by

LXdV = d(iXdV) = divX dV. (2.7)

With this we do have all necessary concepts at hand to reformulate the (purely kinematic part of
the) classical continuum theory of dislocations in the language of differential forms.

3. Kröner revisited

We start with noting that already Kröner was well aware of thefact that the dislocation den-
sity tensorα conceptually emerges as a vector-valued (given by the Burgers vector) 2-form, i. e.
α = αi j

k dxi ⊗dxj ⊗ ∂xk with αi j
k = − α ji

k. But as commonly done in three dimensions he uses
the totally anti-symmetric symbolε i jk to make it a more convenient two-tensorα = α i j ∂xi ⊗ ∂xi

by settingα i j = ε ikl αkl
j . We will not go into more details about this transformation here, but

only state that it makes implicitely use of the natural co-ordinates and the standard metric inR3. A
purely kinematic theory, however, should be independent ofthe chosen metric, as is the formulation
with differential forms.

In order to simplify the calcualtions we assume thatα is only representing dislocations of one
glide system, thus the Burgers vectorb = bk∂xk is fixed andα can be split into the tensor product
of b and a 2-formᾱ asα = ᾱ ⊗b = ᾱi j bkdxi ∧dxj ⊗ ∂xk. Because the Burgers vectorb is taken
to be constant all differential operations need only be applied to the 2-formᾱ . As long as only
single glide is allowed this also naturally splits the plastic distortion tensorβ pl into β pl = β̄ pl⊗b=

β̄ pl
i b jdxi ⊗ ∂xk. We are now able to translate the classical equations for thedislocation density

tensor, as found e. g. in [8] and [9], into the language of differential forms.

α = curlβ pl α = dβ pl

divα = 0 dα = 0

∂tα = −curl(v×α) ∂tα = −d(ivα) = −Lvα

Table 1: Important equations of the field theory of dislocations in classical formulation (left) and in terms
of differential forms (right)

In Table 1 the two formulations are compared, where in both cases all differential operators
are acting solely on the tensorial part represented by the according first indices. Listed from top to
bottom the three equations compared in Table 1 can be viewed as the definition ofα , the represen-
tation of the fact that dislocations may not end inside a crystal and the conservation law for the net
Burgers vector during plastic deformation.

Already Kröner noted in [8] that the first equation "is the continuum version of the definition
[...] in which dislocations are defined as edge lines of interior surfaces over which slip has oc-
curred" and that "clearly a surface and its edge line are connected by the curl-operation (Stokes’
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theorem)". Indeed to understand this statement in full and to be able to draw similar conclusions
for the other two equations we need the generalizition ofδ -distributions, named currents.

4. Distributions and Currents

We begin this section by taking a closer view on the nature ofδ -distributions. It is usual to
think of them as a sort of generalized function (in a literal sence) that can be approximated by
smooth functions which concentrate around a point and the integral over each of them is one. More
precisely, however, we should rather view them as functionals acting on vector spaces of smooth
functions. Both viewpoints have their merits and their draw-backs and we will formally adopt the
latter one but use the first one to understand the calculus defined on generalized functions.

We consider the delta distributionδ (r − r0) at a point r0 to be acting on functionsf by
δ (r − r0)( f ) = f (r0). Thus it assigns to each function its value at the pointr0. More conveniently
this action is written as an integral like

δ (r − r0)( f ) =

∫

δ (r − r0) · f (r)dV. (4.1)

In the language of differential forms we would therefore rather understandδ as a generalized
n-form, δ (r − r0)dV, than as a generalized function. This corresponds to the canonical way of
representing an average over point particles by a density, i. e. a volume form and not as a "poten-
tial".

It is a well known that the kinematics of point paritcles, to which an average velocityv can
be assigned, yields a conservation law for the evolution of the average densityρ of them as∂tρ =

−div(ρv), when no sources of paritcles are present. We will see that this equation also makes sense
for the single particle represented asδ -distribution. To see this we turn the average densityρ into
a functional acting on smooth functions by integrating against, thusρ ( f ) =

∫

ρ f dV. Then we find

∂t |t=0ρ ( f ) =

∫

∂tρ f dV (4.2)

= −

∫

div(ρv) f (4.3)

= −

∫

div( f ρv)−ρ ·v( f )dV (4.4)

=

∫

ρ ·v( f )dV (4.5)

= ρ (v( f )) (4.6)

The first integral in the third line vanishes due to Gauß’ integral theorem if f is taken to vanish
near the boundary of the area integrated over, which is an integral feature of the function spaces
generalized functions are supposed to act upon.

On the other hand, if the single particle is moving, thusr0 = r0(t) with ∂t r0(t) = v, we can
differentiate Equation (4.1) and do easily find

∂t |t=0δ (r − r0(t))( f ) = lim
t→0

1
t

f (r0 (t))− f (r0 (0)) (4.7)

= v( f ) (r0 (t)) (4.8)

= δ (r − r0(0)) (v( f )) . (4.9)
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Thus the averaged density viewed as a functional fullfills the same differential equation like the
single particle. We furthermore notice that we can rewrite the preceeding as

∂t (ρdV) = −div(ρv)dV = −Lv (ρdV) and (4.10)

∂tρ ( f ) = ρ (ivdf) = ρ (Lv f ) . (4.11)

We now turn to a generalizing ofδ -distributions by considering functionals acting on differential
forms. Like noted in the introduction to differential forms, one of their main properties is that they
can be integrated over sub-manifolds of the according dimension. This does in turn directly yield
that each sub-manifoldN of dimensionq does define a functional on differentialq-formsθ in virtue
of

N(θ) =

∫

N
θ . (4.12)

Similarly does everyp = (n−q)-form ω define a functional onq-forms via

ω (θ) =
∫

M
ω ∧θ (4.13)

Functionals on (admissible) spaces of differential forms are called currents and we see that this
concept includes sub-manifolds and differential forms. Currents on the space ofq-forms are for
obvious reasons said to have dimensionq and degree(n−q). We have already seen an example
of this in the relation between points (i. e. 0-dimensnionalsub-manifolds) andn-forms when
discussing the concept ofδ -distributions. In view of the dislocation case we can already anticipate
the correspondance between surfaces over which slip has occurred and the (vector-valued) 1-form
β pl as well as between dislocation lines and the (vector-valued) 2-form α . That the curl-operation
does correspond to the understanding of dislocations as boundary of the slipped surfaces and that
Stokes’ theorem indeed defines this connection can be seen asfollows.

Stokes’ theorem (2.3) directly allows to define the boundaryof a currentγ of dimensionq in
analogy to the sub-manifold case by its action on a(q−1)-form θ , according to

∂γ (θ) = γ (dθ) . (4.14)

On the other hand we can define the exterior derivatived of a current in analogy to the one on
differential forms from the product rule (2.4). The differential forms currents are acting upon are
defined such that the boundary integral in (2.4) vanishes, wherefore the exterior derivative of a
currentγ of degreep is defined as

dγ (θ) = −(−1)pγ (dθ) = (−1)(p+1) ∂γ (θ) . (4.15)

Hence the generalized exterior derivative equals the generalized boundary operator up to a sign. For
currents of odd degree both are the same and we find that the definition of the dislocation density
tensor as the curl of the plastic distortion,α = dβ pl, indeed directly corresponds the representation
of the the slipped area and its boundary as (vector valued) currents inα = ∂β pl. Similarly the
postulation ofα being free of divergence does indeed turn to the condition that dislocations do
not end inside the crystal, saying that they do not have a boundary as a submanifold and therefore
dα = −∂α = 0, when turned to a current.

7
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We give a sketch of the proof for the fact that the evolution equation∂tα = −curl(v×α) =

−Lvα is applicable to the single dislocation viewed as current. This is a special case of a result
found in [4] for sub-manifolds of arbitrary dimension. Let thereforc(t,u) = ct (u) be a parametriza-
tion of a moving curve-segment inM, which is at each timet parametrized by a parameteru run-
ning from 0 toU . We denote withSt the surface swept byc since timet = 0 and withc0

t andcU
t

the curves characterized by the paths of the according end-points of the curve. Let furthermore
v(u) = ∂t |t=0 c(t,u) be the velocity describing the motion ofc at timet = 0. With this we find for
the time-derivative of the induced time-dependent current

∂t |t=0 ct (ω) = lim
t→0

1
t

(

∫

ct

ω −
∫

c0

ω
)

(4.16)

Stokes
= lim

t→0

1
t

(

∫

St

dω −

(

∫

c0
t

ω −

∫

cU
t

ω
))

(4.17)

=
∫

c0

dω (v, ·)+ ω (v)|(0,U)
(0,0) (4.18)

Stokes
=

∫

c0

iv dω +

∫

c0

d ivω (4.19)

= c0 (Lvω) . (4.20)

Considering the product rule for the Lie-derivative (2.6),the Lie-derivative for a currentγ is defined
as

LXγ (ω) = −γ (LXω) (4.21)

and consequently we just found that the literal translationof the motion of a curvec into the
evolution of a currentα yields∂tα = −Lvα .

Summing up we have seen that the three equations listed in Table 1 do apply for the singular
object as well as for the averaged counterparts. However, this also implies that a dislocation system
and its evolution is only correctly described by these equations if either the dislocation actually
form smooth line bundles (nearby dislocations are nearly parallel and have the same Burgers vector)
or the spatial resolution is fine enough to display each dislocation separately. The first case is
rather untypical as dislocations tend to form irregular networks while the latter case is equivalent
to a discrete dislocation representation. The statisticalnature of the local orientation distribution
in dislocation networks therefore asks for more refined dislocation density measures, allowing for
a truely averaged description. Such a dislocation density measure, however, should surely keep
some structural features of the classical theory. In the following we will give a brief overview
of yet proposed refined measures and discuss their relation to the classical theory. Furthermore
we propose two ways of generalizing the classical theory in the language of differential forms
which are called statistical and deterministic for reason which will be explained below. The refined
measures found in the literature are considered as statistical ones.

5. "Statistical" generalizations

The first statistical dislocation density measure was proposed by Kosevich [7]. He classified
dislocations at each point by their line-direction and defines a density functionρ (p, l) depending on
the spatial pointp and the directions as giving the number of dislocations atp whose orientation

8



P
o
S
(
S
M
P
R
I
2
0
0
5
)
0
0
2

SMPRI 2005 Thomas Hochrainer

is contained in a solid angle elementdS arounds. Thus the dislocation density measure reads
α = ρ (p,s)dS. A very similar measure which originally also accounts for avelocity distribution
at each point was later proposed by El-Azab [1]. After averaging the phase space distribution
φ (p,s,v)dVdSdQover the velocity space−or collapsing the velocity distribution by assuming
overdamped dislocation motion− this readsα = ρ (p,s)dVdSwith ρ =

∫

v φ (p,s,v)dQ(v). The
densityρ here carries the same information like in the case of Kosevich, but does count dislocations
of a certain directionswithin a spatial volume elementdV around a pointp. Actually the difference
between both is best understood in the language of differential forms which additional brings out
an important draw-back of both definitions. Both measures are defined on the configurational space
made up of the crystal points and all possible directions at each point. They can therefore be seen
as consisting of a spatial and a directional part. In the definitions this is displayed in the volume
elementdV and the solid angle elementdS. In terms of differential forms, however, this means
that the measure of Kosevich is spatially a 0-form (like e. g.a potential) and El-Azabs measure
is spatially a 3-form (like a density of point particles). This is also reflected in the evolution law
derived by El-Azab who treats the appearing density functionsφ andρ like those for a conservative
system of angular dependend point particles. This results in a Liouville equation forφ and the
classical conservation law∂tρ = −div(ρv) for the segment density. To the authors knowledge
there is no evolution law given by Kosevich.

It is rather straight forward to give a similar description which accounts for the line like char-
acter of the dislocations by assigning to each point in the phase space(p,s) a spatial unit vectorl (s)
with the according direction. Thenα = ρ (p,s) i l dVdSdefines a spatial 2-form. We need to extend

the spatial velocityv to a generalized velocity on the configuration spaceV =
(

v,(∇l v)
⊥
)

= (v,ϑ),
where the second componentϑ accounts for the rotation of the dislocation segments during the
motion of the dislocation. The evolution equation for this measure reads

∂tα = −P(LVα) , (5.1)

whereP denotes a projection operator ensuring that it is∂tα = ∂tρ (p,s) i l dVdS. In other words
any evolving curvature is ignored in the same fashion as it isin the definition of the measure.
Actually this yields the same evolution equation as given byEl-Azab. It seems therefore not too
surprising that it was shown in [6] that this evolution law can only describe the evolution of a
dislocation system if the dislocations are and stay straight, which is only possible if the absolut
value of the velocity is constant on the whole configuration space. This is obviously not acceptable
when aiming at a continuum theory of dislocations.

Before going for a solution of this problem we will state why we called the preceeding dis-
location density measures statistical. If a volume densityis defined on the underlying space (like
implicitely in the usual calculus) there is a canonical way to turn a 2-form into a vector field by
virtually inverting the inner multiplication used above tocreate a 2-form from a vector field. If
this is done for the classical dislocation density this vector field does in principal allow for recov-
ering the dislocation lines as the flux lines (integral curves) of this vector-field. This is not possible
with the measures introduced above, because no informationon the curvature is available which
would be needed to reconstruct the dislocation lines. This remaining "uncertainty" about the true
dislocation state gives rise to the term statistical. The advantage of a statistical measure clearly is
that it does not impose restrictions on "representable" dislocation distributions, while the restricted
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applicability of the classical theory indeed corresponds to the rare cases where the integral curves
actually recover the dislocations.

However, that the curvature is not known is also the main reason why these descriptions do
only work for trivial velocity distributions. As was already pointed out in [13] this can easily be
seen in that the density functionρ (p, l) can not distinguish between a distribution of straight dislo-
cations with random direction or randomly distributet dislocation loops of a fixed radius. However,
for a spatially constant absolut value of the velocity, the densityρ would in the first case stay con-
stant while it would have to increase in the second one. It wastherefore proposed in [5] that the
curvature should be included in the configuration space. Then the configuration space is made up
of pointsp, directionssand curvaturesk and we can extend the density defined at last to

α (p,s,k) = ρ (p,s,k) i l dVikdSdK. (5.2)

This measure additionally claasifies dislocations by theircurvature but still is a statistical measure
as now the higher order curvature would be needed to reconstruct the dislocation lines. For this case
the generalized velocityV has additionally to include a term accounting for the curvature change
during the motion of the dislocation, which is (necessarily) given byk = 〈v,k〉k+ ∇l ϑ , and yields
V = (v,ϑ ,k). The brackets〈 · , · 〉 denote the scalar product of two vectors. The evolution equation
is again given by

∂tα = −P(LVα) . (5.3)

where the projection operatorP has to be adjusted accordingly. This evolution equation canbe
turned to an evolution equation forρ (p,s,k), which is in [6] shown to be given by

∂tρ = −Div (ρV)+ 〈v,k〉ρ . (5.4)

Here Div denotes the divergence operator on the configuration space. This evolution equation can
of course distinguish between distributions made up solelyof straight dislocations or including
curved dislocations and the term〈v,k〉ρ will account for changes of total line length in the system
due to the motion of curved lines. However, to capture the evolution of a dislocation system
correctly we do again have to impose conditions on the natureof the velocity fields, saying the
absolute value of the velocity may not depend on the line direction nor on the curvature but solely on
the spatial point. This still is a serious restriction for a general theory of dislocations as dislocations
may have different mobilities depending on their character(edge, screw or mixed). Furthermore it
seems natural to include line tension effects into the velocity, what would make its absolut value
depending on the local curvature. One might think that a straight forward extension of this approach
in that the configuration space would include higher order curvatures and allowing for a variation
of the curvatures of the highest order in the definition ofα (rendering the approach a statistical
one in the sense explained above) could further attenuate the restrictions imposed on the velocity;
but it was shown in [6] that a statistical approach of arbritary order would have to make the same
restriction tov as the one including just first order curvatures. Although the mistake made would
presumably become smaller with approaches of higher order this does not seem to be a promising
way to arrive at a managable description, as the dimension ofthe configuration space would further
increase. We therefore turn to an extension of the classicaldislocation density measure which is
deterministic in the sense that it allows to reconstruct thedislocation lines.
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6. Deterministic generalization

We start this section with a short review of a reformulation of the classical dislocation density
evolution given by Sedlá̌cek und Kratochvíl [10]. As was noted before, the dislocation density
tensorα as a vector valued 2-form allows to determine a vector fieldR for which α = b⊗ iRdV. If
there is a Riemannian metric, i. e. a local scalar product given, this vector-field can be written as
R= ‖R‖ · R

‖R‖ and withρ = ‖R‖ andl = R
‖R‖ we may writeα = b⊗ρ i l dV. The evolution ofα can

then be described by the evolution of the densityρ and of the directionl . Sedlacek and Kratochvil
derived according formulas for the two-dimensional situation of dislocations moving only within
their glide plane. Parametrizing the directional space by an angleϕ they find

∂tρ = −div(ρv)+ ρ‖v‖k

∂tϕ = ∇l‖v‖−‖v‖div l ,

with k being the curvature of the flux lines ofR. Comparing this to the evolution equation 5.4
derived for the curvature-including statistical theory, we find that the evolution ofρ looks nearly
the same, but that there is no complement to the directional evolution in the statistical theories.
Indeed the according evolution is deliberately ignored by applying the projection operatorP in
order to conserve the nature of a statistical measure. It seems therefore appropriate to ask whether
the unrequestedly evolving part should not be constituent of the definition of the dislocation density
measure. For the measure defined on the configuration space made up of points and directions,
originally defined asα = ρ (p,s) i l (s)dVdS, this would yield

α = ρ (p,s) i l (s)dVik (p,s)dS, (6.1)

with a curvature vectork depending on space and direction. The precondition that dislocations do
not end inside the crystal could then be directly transferred asdα = 0, or equivalently Div(ρ · (l ,k))=

Div (ρ ·L) = 0. With the generalized velocityV = (v,ϑ) the evolution equation is therefore given
like in the classical case by

∂tα = −LVα . (6.2)

The sketch of a two-dimensional example shall elucidate theevolution determined from this equa-
tion. We consider only dislocations of the same Burgers vector moving within their glide plane.
The glide plane is taken to be thex-y-plane and the space of directions at each point is character-
ized by the angleϕ the dislocation segments form with thex-axis. The velocity vectorv and the
curvature vectork are then both characterized by a (pseudo-) scalar as their direction is fixed to be
orthogonal to the line. This yields

L(x,y,ϕ) = cosϕ∂x +sinϕ∂y +k∂ϕ (6.3)

V (x,y,ϕ) = vsinϕ∂x−vcosϕ∂y−L(v)∂ϕ (6.4)

and we find

∂tρ = −Div (ρ ·V)+vkρ (6.5)

∂tk = −vk2 +L(L(v))−V (k) . (6.6)

A derivation of these formulas as well as a detailed discussion of the underlying conservation law
will be given in a following paper.

11



P
o
S
(
S
M
P
R
I
2
0
0
5
)
0
0
2

SMPRI 2005 Thomas Hochrainer

7. Summary and Perspectives

The concept of currents was used to show how evolution equations for differential forms can be
directly cast from the equations of motion of a single geometric object. We used a differential form
formalism to extend the classical dislocation density measure to higher dimensional descriptions
which are able to reflect more details of a dislocation distribution. We distinguish two kinds of
dislocation density measures, deterministical and statistical ones. The deterministical measures are
not able to represent arbitrary discloation states but yield exact evolution equations for admissible
distributions, while the statistical measures may correctly represent a general dislocation state, but
impose restrictions on admissible velocity distributionsin order to capture the evolution correctly.
Future work will have to address the question to which extendthese restrictions may be acceptable
for a statistical mechanics description of plasticity.
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