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1. Introduction

In the last years there has been a growing interest in pHiysizased continuum theories of
dislocations. This development has been driven by two prob] namely the explanation of size
effects in small-scale structures and the long-standirestipn of the mechanisms which govern
dislocation patterning. A continuum treatment of both peofis seems only sensible if the con-
tinuum theories are built directly on the discrete unit agpic deformation, i. e. the dislocation.
An important step towards continuum modelling of intenagtdislocation systems was done by
Groma [2], who used the analogy between charged point fEtic a plane and straight edge dis-
locations moving on a single slip system. By adopting avagaqethods from statistical physics,
Groma arrived at a density-based representation of thenwigsaf such systems. After presenting
a mean field theory in the original paper, the treatment wiirsae in several follow-ups to include
short range interactions, see e. g. [3]. Comparison of glieatislocation dynamics simulations
and numerical solutions of the density-based dynamicattsous demonstrates that the refined
models provide a faithful representation of the discreteatyics of two-dimensional dislocation
systems, even if nontrivial boundary conditions are impd42].

It seems quite promising to use a similar approach to artigecantinuum description of more
realistic, three-dimensional dislocation systems. Thedfdimensional generalization of such the-
ories is, however, a challenging task in view of the linelgharacter of dislocations which renders
the adoption of methods originally developed for interagtparticles somewhat non-trivial. The
most fundamental question in this regard is how to charaetéine local dislocation state. The clas-
sical dislocation density tensor does not carry enoughraméion for this purpose as was already
noted by Koner [8]. In the pioneering work of EI-Azab [1], thislocation state was characterized
by direction and velocity-dependent phase space disimitsiand density functions. However, as
will be explained below, this may lead to a description imtgrof unconnected dislocation seg-
ments which represent the evolution of a system of conndictes only in an incomplete manner.
Nevertheless, the idea of characterizing dislocation garditions in terms of objects defined on
higher-dimensional spaces seems promising. The questimwi higher-dimensional extensions of
the classical representation of a three-dimensional@hsilon configuration (i.e., the representation
in terms of the dislocation density tensor) may be constaict

The application of statistical mechanics to two-dimenai@ystems of straight edge disloca-
tions relies heavily on their equivalence to particle systén two dimensions. For such systems
it is well known () how to treat the point particles as a singular density amitin terms ofd-
distributions, {i) how to do averages over the single objects, as weliigshpw to handle the
averaged object as a density. In this paper we will mainlydrecerned with the question how to
generalize the pertinent concepts and methods to curvesi dind their averages. This is most nat-
urally done by using the language of differential forms andents. As this leads to a formulation
which is independent of the dimension of the underlying spd@lso constitutes an ideal starting
point for systematic generalizations as shown in Secticansds6.

The idea of applying the language of differential forms t® ¢ontinuum theory of dislocations
is not new. Already Kréner was aware of the nature of the daion density tensor as a differential
form [8]. The language of differential forms may be expldifer purely formal exercises, see e.g.
the formal translation of the classical three dimensiohabty to a four dimensional space-time in
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[11]. However, in the following we shall demonstrate thatan also be used as a powerful tool
for overcoming structural deficiencies of the dislocati@msity tensor and obtaining an improved
description of dislocation systems.

2. Differential Forms

Differential forms are a standard tool in differential téggy and differential geometry. They
are also widely used in different branches of physics, agftample in Maxwell theory. We wiill
therefore just give a collection of facts about how to do @lais with differential forms, which turn
vector analysis into a rather algebraic formalism workiagtbmatically”. A deeper understanding
of the meaning of differential forms as representationsootiouously distributed subspaces (sub-
manifolds) will be addressed in the section on currents.

A very simplified heuristic definition might envisage difettial forms of ordemp as objects
which may be integrated ovgrdimensional spaces. From three-dimensional Maxwellrihee
may take as exampleg {he electric potential which is only meaningfully evalediat points (zero-
dimensional spaces) and is thus a O-forim) thie electrical field which may be integrated over lines
as a 1-form,i{i) the magnetic flux density which may be integrated over sedand therefore is
considered as a 2-form ani@) densities which define 3-forms and can be integrated ovames.
This is reflected in the spatial part of the physical dimemsiof the objects, e. g. in the case above
we have i) the electric potentigl], (ii) the electrical fieldV - m~?], (iii) the magnetic flux density
[Wb-m~2] and {v) the mass-densitjkg-m~3]. Using this as a (very hand-waving) criterion for
the mathematical representation of physical objects, waddiately see that a dislocation density
with dimension[1-m~2] should be defined as a 2-form.

2.1 Vector fields and differential 1-forms

Although the notions of manifolds, charts, tangent andrageat bundles are the starting point
of the following calculations, we will not go into any detailit rather adopt parts of the language
as given. An important concept, however, is the understgndf tangent vector9(|ID (vectors
annexed to a spatial poiq) as acting on function$ as directional derivative ai by X|p(f) =

X' Z| (f)=X-0Of (p). Here and in the following we adopt the Einstein summatiamvetion for
autompatically contracting over pairs of upper and loweidas. The underlying space is considered
n-dimensional and for the above notion it makes no differembether we think of it as a general
n-dimensional manifold in a chart or simply &" with standard co-ordinates. We considﬁr‘p

as alocal basis for tangent vectors and introduce the aiabeavotiond,|,, for them.

In addition to tangent vectors we also can define co-vectotsforms (sometimes also called
Pfaffian forms) as locally linear mappings from a tangentepa the real numbers. Each 1-form
wis locally given byn numbersy (p) (similar to a vector) by settingy (p) = w (axi | p) . Formally

we can define a local basi | , for co-tangent vectors by demandiay | - (axi |p) = 3!, with the

Kronecker inde>6}. Then it is obviouslyw = wdxX. Best known example of 1-forms are those
arising as differentials of a functioh denoted byd f = d,; fdX. They act on a vectoX in a dual
way to the vector acting on the functidnby d f (X) = X'd, f.
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Higher-order differential forms

A (differential) p-form is a co-variant tensad = Ail...ipdx'l ®---®@dXr of orderp which obeys
for each permutatiom of order p the relationA (X,T(1>,...,X,T(p)) = signmA(Xz... Xp). Functions
are considered as 0-forms. We define an alternating predata p-form w and ag-form 6 as the
(p+ q)-form given by

1 .
wA B (Xq,... 7Xp+q) = W Z signmmw ® 6 (XTT(l)7 e >X7T(p+q)) . (2.1)
1q! &

This product is associatve, tht@ N 6) An = wA (6 AN), and it holds forw and 6 as in (2.1),
wA 0 =(—1)P0 A w. We moreover receive a basis for the space of differepti@rms from the
alternating productdX A - -- AdxP of the basis of 1-formex by requiring the indices to be sorted
byi; < - <ip. Eachp-form w can then be written a® = a,...;,dX* A+ AdXe.

Besides the exterior multiplication of two forms, there ro#her important algebraic oper-
ation on differential forms, which is the inner multiplicat by a vector-fieldX. For eachp-
form w the inner multiplication withX is the (p — 1)-form ix w defined by xw (Xy,...,Xp-1) =
w(X,Xq,...,Xp-1). In standard tensor notation this is a contractioX afith the first index ofw.

Calculus on differential forms

Two differential operators on differential forms are of sjgé importance for the following:
the exterior derivativel and the Lie-derivativel. The exterior derivativel is defined by

dw = da,..i, AR A - A dXP = %dx AAXEA - A . 2.2)

In standard three-spackturns out to be the grad-, curland div- operator on 0-, 1- and 2-forms,
respectively. As an easy consequence from standard calitigid od = 0.

As noted in the introduction to this section an importanipganty of differential forms is that
they can be integrated over appropriate sub-spaces. Foalsg@asons we can not go in details
about this but only state that on spaces with a standard wwfarmdV eachn-form can be written
asw = pdV with a functionp and can then be integrated like a usual function. In threeesphe
standard volume is given in standard co-ordinated)xag\ dx? A dx2, which is more conveniently
written asdxdx?dx® when used in multiple integrals. The integral theorems aifand Stokes
turn out to be special cases of the gen&takes’ theoremwhich says that for a differentigh— 1)-
form on an-dimensional manifold/ with boundarydM it is

/ do=[ . 2.3)
M oM
Stokes theorem together with the fact tHat 0 onn-forms easily yields theroduct rule
/dee+(—1)p/ wAdB= [ wAB, 2.4)
M M oM

wherew is ap-form and6 a (n— (p+ 1))-form.
The Lie-derivative of a differential form in the directio @ vector-fieldX can be defined by
combining the exterior derivative and the inner multiplioa as

Lxw=dixw+ix dw. (25)
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Similar to the product rule (2.4) we find for the Lie-derivati

/ ;;waeJr/ wALXB:/ i (WA B). 2.6)
M M oM

If a standard volume densityV is defined on the underlying space (thus eadbrm w can be
written asw = pdV), it is possible to define the divergence of a vector-fi¢ldy

LxdV =d(ixdV) = divX dV. 2.7)

With this we do have all necessary concepts at hand to refatenthe (purely kinematic part of
the) classical continuum theory of dislocations in the leage of differential forms.

3. Kroner revisited

We start with noting that already Kroner was well aware offt that the dislocation den-
sity tensora conceptually emerges as a vector-valued (given by the Bsirgeetor) 2-form, i. e.
a = aj; ¥dX ® dx ® dg with a;; X = — a;ji . But as commonly done in three dimensions he uses
the totally anti-symmetric symbai® to make it a more convenient two-tensmr= a'ld; @ dy
by settinga'l = X a,q1. We will not go into more details about this transformaticerdy but
only state that it makes implicitely use of the natural cdiates and the standard metridid. A
purely kinematic theory, however, should be independetite€hosen metric, as is the formulation
with differential forms.

In order to simplify the calcualtions we assume thids only representing dislocations of one
glide system, thus the Burgers vectoe bkd, is fixed anda can be split into the tensor product
of band a 2-forma asa = a @b = ajj b*dX A dX @ d«. Because the Burgers vectois taken
to be constant all differential operations need only be iadpo the 2-forma. As long as only
single glide is allowed this also naturally splits the glaststortion tensoBP! into BP' = Pl o b =
[Bip'bjdx' ® Ox. We are now able to translate the classical equations fodiglecation density
tensor, as found e. g. in [8] and [9], into the language okdéhtial forms.

a = curl gP a =dpP
diva =0 da =0
ga=—curl(vxa) | ga=—-d(iya)=—-Lya

Table 1: Important equations of the field theory of dislocations iassical formulationléft) and in terms
of differential forms (ight)

In Table 1 the two formulations are compared, where in botiesall differential operators
are acting solely on the tensorial part represented by therdinig first indices. Listed from top to
bottom the three equations compared in Table 1 can be viesvdealefinition ofx, the represen-
tation of the fact that dislocations may not end inside ataihyand the conservation law for the net
Burgers vector during plastic deformation.

Already Kroner noted in [8] that the first equatiois the continuum version of the definition
[...] in which dislocations are defined as edge lines of imtesurfaces over which slip has oc-
curred' and that ¢tlearly a surface and its edge line are connected by the aperation (Stokes’
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theorem). Indeed to understand this statement in full and to be abbiraw similar conclusions
for the other two equations we need the generalizitiod-dfstributions, named currents.

4. Distributions and Currents

We begin this section by taking a closer view on the naturé-dfstributions. It is usual to
think of them as a sort of generalized function (in a liter@hee) that can be approximated by
smooth functions which concentrate around a point and tiegiial over each of them is one. More
precisely, however, we should rather view them as funckaeting on vector spaces of smooth
functions. Both viewpoints have their merits and their dizaecks and we will formally adopt the
latter one but use the first one to understand the calculusetkefin generalized functions.

We consider the delta distributiod (r —rp) at a pointrg to be acting on functiond by
O (r—ro)(f) = f(ro). Thus it assigns to each function its value at the pajnMore conveniently
this action is written as an integral like

O(r—rop)( /5 r—ro)- f(r)dv. (4.2)

In the language of differential forms we would thereforehestunderstand as a generalized
n-form, & (r —rp)dV, than as a generalized function. This corresponds to thenieal way of
representing an average over point particles by a density,a volume form and not as a "poten-
tial".

It is a well known that the kinematics of point paritcles, thigh an average velocity can
be assigned, yields a conservation law for the evolutiomefaverage density of them asg.p =
—div (pv), when no sources of paritcles are present. We will see tlegtjuation also makes sense
for the single particle represented @aslistribution. To see this we turn the average dengitgito
a functional acting on smooth functions by integrating agiithusp (f) = [ pfdV. Then we find

Gl_op (f) = /dpfdv (4.2)
~ famton .
- —/div fpv) — p-v(f)dV (4.4)
= /p -v(f)dv (4.5)
= p(v(f)) (4.6)

The first integral in the third line vanishes due to Gaul? gni theorem iff is taken to vanish
near the boundary of the area integrated over, which is a&grak feature of the function spaces
generalized functions are supposed to act upon.

On the other hand, if the single particle is moving, thyis= ro (t) with d:ro(t) = v, we can
differentiate Equation (4.1) and do easily find

t—0

v(1) (ol1) (4.8)
— &(r—ro(0) (v(1). (4.9)

Gl— 0 (r—ro(t)) () = lim= f(ro(t))— f(ro(0)) (4.7)
)
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Thus the averaged density viewed as a functional fullfils same differential equation like the
single particle. We furthermore notice that we can rewhtegreceeding as

o (pdV) = —div(pv)dV = —Ly (pdV) and (4.10)
ap (f) = p(ivdf) = p (Luf). (4.11)

We now turn to a generalizing @-distributions by considering functionals acting on diéfetial
forms. Like noted in the introduction to differential forpmne of their main properties is that they
can be integrated over sub-manifolds of the according déwen This does in turn directly yield
that each sub-manifold of dimensiong does define a functional on different@forms 6 in virtue

of

N () = /N . (4.12)

Similarly does every = (n— q)-form w define a functional og-forms via
w(6) :/ WA B (4.13)
M

Functionals on (admissible) spaces of differential formes Galled currents and we see that this
concept includes sub-manifolds and differential forms.rrénis on the space offorms are for
obvious reasons said to have dimensipand degreén—q). We have already seen an example
of this in the relation between points (i. e. 0-dimensniosab-manifolds) andh-forms when
discussing the concept étdistributions. In view of the dislocation case we can alseanticipate
the correspondance between surfaces over which slip hasredand the (vector-valued) 1-form
BP as well as between dislocation lines and the (vector-valaddrm a. That the curl-operation
does correspond to the understanding of dislocations asdaoy of the slipped surfaces and that
Stokes’ theorem indeed defines this connection can be sdeltoags.

Stokes’ theorem (2.3) directly allows to define the bounddrst currenty of dimensiong in
analogy to the sub-manifold case by its action dig & 1)-form 8, according to

dy(0) =y(do). (4.14)

On the other hand we can define the exterior derivadivid a current in analogy to the one on
differential forms from the product rule (2.4). The diffat@l forms currents are acting upon are
defined such that the boundary integral in (2.4) vanishegrefbre the exterior derivative of a
currenty of degreep is defined as

dy(8) = — (—1)Py(d6) = (-1)P*V gy (0). (4.15)

Hence the generalized exterior derivative equals the gérned boundary operator up to a sign. For
currents of odd degree both are the same and we find that tmitidefiof the dislocation density
tensor as the curl of the plastic distortian= d”', indeed directly corresponds the representation
of the the slipped area and its boundary as (vector valued@ms ina = dBP. Similarly the
postulation ofa being free of divergence does indeed turn to the conditiam dislocations do
not end inside the crystal, saying that they do not have adanyras a submanifold and therefore
da = —da =0, when turned to a current.
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We give a sketch of the proof for the fact that the evolutionapnd.a = —curl(vx a) =
—Lya is applicable to the single dislocation viewed as currerttis Ts a special case of a result
found in [4] for sub-manifolds of arbitrary dimension. Leeteforc(t,u) = ¢; (u) be a parametriza-
tion of a moving curve-segment M, which is at each timeé parametrized by a parameterun-
ning from 0 toU. We denote with§ the surface swept by since timet = 0 and withc? andc
the curves characterized by the paths of the according eimtispof the curve. Let furthermore
v(u) = d|;_pc(t,u) be the velocity describing the motion oft timet = 0. With this we find for
the time-derivative of the induced time-dependent current

GlioC(w) = t'[g% (/th—/%w> (4.16)
Stokes,. 1
= tll_n%? (/ida)— (/c?w—/quw>> (4.17)
= /COdw(v,-)+w(v)!§8ﬁQ (4.18)
Stokes . .
o /CO|de+/COd|Vw (4.19)
= Co(Lyw). (4.20)

Considering the product rule for the Lie-derivative (2t6§ Lie-derivative for a currentis defined
as
Lxy(w) = —y(Lxw) (4.21)

and consequently we just found that the literal translatbrthe motion of a curves into the
evolution of a currentr yieldsdia = —L,a.

Summing up we have seen that the three equations listed Ie Tatp apply for the singular
object as well as for the averaged counterparts. Howevsral$o implies that a dislocation system
and its evolution is only correctly described by these dquatif either the dislocation actually
form smooth line bundles (nearby dislocations are nearniglfghand have the same Burgers vector)
or the spatial resolution is fine enough to display each diglon separately. The first case is
rather untypical as dislocations tend to form irregulammeks while the latter case is equivalent
to a discrete dislocation representation. The statistiafdire of the local orientation distribution
in dislocation networks therefore asks for more refinedodedion density measures, allowing for
a truely averaged description. Such a dislocation densagsure, however, should surely keep
some structural features of the classical theory. In thieviehg we will give a brief overview
of yet proposed refined measures and discuss their relatitimetclassical theory. Furthermore
we propose two ways of generalizing the classical theonjhélanguage of differential forms
which are called statistical and deterministic for reasbictvwill be explained below. The refined
measures found in the literature are considered as statisties.

5. "Statistical" generalizations

The first statistical dislocation density measure was megdy Kosevich [7]. He classified
dislocations at each point by their line-direction and dedia density functiop (p,|) depending on
the spatial poinp and the directiors as giving the number of dislocations pivhose orientation
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is contained in a solid angle elemeah® arounds. Thus the dislocation density measure reads
a =p(p,s)dS A very similar measure which originally also accounts faretocity distribution

at each point was later proposed by El-Azab [1]. After aveigqdhe phase space distribution
@(p,s,v)dvVdSdQover the velocity space-or collapsing the velocity distribution by assuming
overdamped dislocation motienthis readsor = p (p,s)dvVdSwith p = [, @(p,s,v)dQ(v). The
densityp here carries the same information like in the case of Kosebiat does count dislocations
of a certain directiors within a spatial volume elemedd around a poinp. Actually the difference
between both is best understood in the language of diffiateiorms which additional brings out
an important draw-back of both definitions. Both measureslafined on the configurational space
made up of the crystal points and all possible directionsehoint. They can therefore be seen
as consisting of a spatial and a directional part. In the diefivs this is displayed in the volume
elementdV and the solid angle elemedS& In terms of differential forms, however, this means
that the measure of Kosevich is spatially a 0-form (like e.agotential) and El-Azabs measure
is spatially a 3-form (like a density of point particles). i§lis also reflected in the evolution law
derived by El-Azab who treats the appearing density funstipandp like those for a conservative
system of angular dependend point particles. This results Liiouville equation forg and the
classical conservation ladp = —div(pv) for the segment density. To the authors knowledge
there is no evolution law given by Kosevich.

It is rather straight forward to give a similar descriptiohiah accounts for the line like char-
acter of the dislocations by assigning to each point in trasplspaceép, s) a spatial unit vectar(s)
with the according direction. Them= p (p,s)ijdV dSdefines a spatial 2-form. We need to extend
the spatial velocity to a generalized velocity on the configuration spdce (v, (D|v)l> =(v,9),
where the second componeftaccounts for the rotation of the dislocation segments duite
motion of the dislocation. The evolution equation for thisasure reads

da = —P(Lya), (5.1)

whereP denotes a projection operator ensuring that & = d;p (p,s)ijdVdS In other words
any evolving curvature is ignored in the same fashion as i he definition of the measure.
Actually this yields the same evolution equation as giverEbyA\zab. It seems therefore not too
surprising that it was shown in [6] that this evolution lawncanly describe the evolution of a
dislocation system if the dislocations are and stay sttaighich is only possible if the absolut
value of the velocity is constant on the whole configuratipace. This is obviously not acceptable
when aiming at a continuum theory of dislocations.

Before going for a solution of this problem we will state whe walled the preceeding dis-
location density measures statistical. If a volume derisityefined on the underlying space (like
implicitely in the usual calculus) there is a canonical wayurn a 2-form into a vector field by
virtually inverting the inner multiplication used above doeate a 2-form from a vector field. If
this is done for the classical dislocation density this @eéeld does in principal allow for recov-
ering the dislocation lines as the flux lines (integral cejva this vector-field. This is not possible
with the measures introduced above, because no informatidhe curvature is available which
would be needed to reconstruct the dislocation lines. Tdmnsaining "uncertainty" about the true
dislocation state gives rise to the term statistical. Theaathge of a statistical measure clearly is
that it does not impose restrictions on "representabldbaisgion distributions, while the restricted
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applicability of the classical theory indeed corresporathe rare cases where the integral curves
actually recover the dislocations.

However, that the curvature is not known is also the mainareaghy these descriptions do
only work for trivial velocity distributions. As was alrepgbointed out in [13] this can easily be
seen in that the density functign(p,|) can not distinguish between a distribution of straightadisl
cations with random direction or randomly distributet dégltion loops of a fixed radius. However,
for a spatially constant absolut value of the velocity, thagity p would in the first case stay con-
stant while it would have to increase in the second one. lttwaefore proposed in [5] that the
curvature should be included in the configuration spacenThe configuration space is made up
of points p, directionss and curvaturek and we can extend the density defined at last to

a(p,s,k) =p(p,sk)idVikdSdK (5.2)

This measure additionally claasifies dislocations by tbefwature but still is a statistical measure
as now the higher order curvature would be needed to recan e dislocation lines. For this case
the generalized velocity has additionally to include a term accounting for the curkatchange
during the motion of the dislocation, which is (necessaugiyen byt = (v.k) k+ 0,3, and yields
V =(v,3,¢). The brackets - , - ) denote the scalar product of two vectors. The evolution tgua
is again given by

oa=—-P(Lya). (5.3)

where the projection operaté has to be adjusted accordingly. This evolution equationbzan
turned to an evolution equation fpr(p, s,k), which is in [6] shown to be given by

ap = —Div(pV)+(vk) p. (5.4)

Here Div denotes the divergence operator on the configuraflace. This evolution equation can
of course distinguish between distributions made up sadélgtraight dislocations or including
curved dislocations and the terfw k) p will account for changes of total line length in the system
due to the motion of curved lines. However, to capture thdutiom of a dislocation system
correctly we do again have to impose conditions on the naifithe velocity fields, saying the
absolute value of the velocity may not depend on the lineetioe nor on the curvature but solely on
the spatial point. This still is a serious restriction foremgral theory of dislocations as dislocations
may have different mobilities depending on their charaf#dge, screw or mixed). Furthermore it
seems natural to include line tension effects into the viglowhat would make its absolut value
depending on the local curvature. One might think that aggttdorward extension of this approach
in that the configuration space would include higher ordevatures and allowing for a variation
of the curvatures of the highest order in the definitionoofrendering the approach a statistical
one in the sense explained above) could further attenuatestitrictions imposed on the velocity;
but it was shown in [6] that a statistical approach of arbyitarder would have to make the same
restriction tov as the one including just first order curvatures. Althoughrtistake made would
presumably become smaller with approaches of higher ontedbes not seem to be a promising
way to arrive at a managable description, as the dimensitreafonfiguration space would further
increase. We therefore turn to an extension of the clasdiskication density measure which is
deterministic in the sense that it allows to reconstructdisication lines.

10
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6. Deterministic generalization

We start this section with a short review of a reformulatiéthe classical dislocation density
evolution given by Sedt&ek und Kratochvil [10]. As was noted before, the dislogatiensity
tensora as a vector valued 2-form allows to determine a vector feldr whicha = b®igdV. If
there is a Riemannian metric, i. e. a local scalar produargithis vector-field can be written as
R=||R]|- & and withp = ||R|| andl = &, we may writea = b® pijdV. The evolution of can
then be described by the evolution of the dengitgnd of the direction. Sedlacek and Kratochvil
derived according formulas for the two-dimensional sitirabf dislocations moving only within

their glide plane. Parametrizing the directional spacerbgragle¢ they find

ap = —div(pv) +plv|k
69 = Oi||vi[ —[vi|divl,

with k being the curvature of the flux lines & Comparing this to the evolution equation 5.4
derived for the curvature-including statistical theorg find that the evolution gb looks nearly
the same, but that there is no complement to the directior@lton in the statistical theories.
Indeed the according evolution is deliberately ignored pglying the projection operatd? in
order to conserve the nature of a statistical measure. iségerefore appropriate to ask whether
the unrequestedly evolving part should not be constituttisodefinition of the dislocation density
measure. For the measure defined on the configuration spate upaof points and directions,
originally defined asr = p (p,s)i (s) dVdS this would yield

a:p(p,s)u (S)dVIK(p7S)dS (61)

with a curvature vectok depending on space and direction. The precondition thitodisons do
not end inside the crystal could then be directly transteasla = 0, or equivalently Dip - (1,k)) =
Div (p-L) = 0. With the generalized velocity = (v,J) the evolution equation is therefore given
like in the classical case by

ga=—-Lyd. (6.2)

The sketch of a two-dimensional example shall elucidateettodution determined from this equa-
tion. We consider only dislocations of the same Burgersoretioving within their glide plane.
The glide plane is taken to be thley-plane and the space of directions at each point is character
ized by the angle the dislocation segments form with tkeaxis. The velocity vectov and the
curvature vectok are then both characterized by a (pseudo-) scalar as thegtion is fixed to be
orthogonal to the line. This yields

L(X,Y,¢) = cosgox+singd,+ kdy (6.3)
V (X,y,¢) = vsingdy—vcospdy— L (V) (6.4)
and we find
op = —Div(p-V)+vko (6.5)
dk = —vIC+L(L(V) -V (K). (6.6)

A derivation of these formulas as well as a detailed disomsef the underlying conservation law
will be given in a following paper.
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7. Summary and Perspectives

The concept of currents was used to show how evolution empsator differential forms can be
directly cast from the equations of motion of a single gesimebject. We used a differential form
formalism to extend the classical dislocation density measo higher dimensional descriptions
which are able to reflect more details of a dislocation distibn. We distinguish two kinds of
dislocation density measures, deterministical and $talones. The deterministical measures are
not able to represent arbitrary discloation states butyéehct evolution equations for admissible
distributions, while the statistical measures may colyaejpresent a general dislocation state, but
impose restrictions on admissible velocity distributiam®rder to capture the evolution correctly.
Future work will have to address the question to which extbede restrictions may be acceptable
for a statistical mechanics description of plasticity.
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