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1. Introduction

There is as yet no microscopic theory of plasticity that mooates production, annihilation,
and interaction of all the structural defects in a comprehenand natural manner. Continuum
elasticity theory is often used [1, 2] to model material e at large distances from the de-
fects. Inability of continuum theory to correctly descripeenomena at short distances from the
defects is well known. For example, in continuum elastititgory, the stress and strain fields are
singular along the dislocation lines, and hence the interadetween them is poorly represented
at short distances between them. Given the current interesiniaturisation of devices, we note
that the length scales associated with nanodevices arenalbfer continuum models to be appli-
cable. Continuum theory of dislocations, and the otherasfecannot be readily used to model
mechanical properties of miniaturized devices.

The preeminent role of topological defects, like the diatamns, in plasticity of materials in
three dimensions is well known. The change in the topology #nises as a consequence of the
presence of topological defects can also affect the othgsipdl properties of materials. For in-
stance, enhanced scattering, and existence of infinite eunfobound states for electrons was
demonstrated in presence of dislocations [3 —5]; electirodsslocated crystals can undergo local-
ization [6]; electrons can show modified Aharonov-Bohm tymterference effects while getting
scattered from dislocations [7]. Clearly, the details aigdificance of these effects would depend
on the details of the structure of the defects, especiallgnithe size of the material is small.

Topologically nontrivial objects arise in various physicantexts that includes gravity, parti-
cle physics and condensed matter physics and they haveealldtedied using appropriatguge
theories[8 — 10]. The aim of the present talk is to an overview of theggatheoretic description of
defects in an elastic continuum. After a brief introductiorgauge theory in section 2, we shall de-
scribe the gauge theoretic formulation of defects in antielasntinuum by Edelen and coworkers
[11, 12] in section 3. They incorporated nonintegrable dafdions by demanding invariance of
the elastic Lagrangian under the local action of the Eualdgroup SO(3T(3). Kadic and Ede-
len argued [11] that dislocations arise from the inhomogaseaction of the group of translations,
T(3), while the disclinations owe their origin to action bktrotation group, SO(3). In spite of the
mathematical beauty of the theory, their solution (of tmedirized gauge field equations) for the
stress field due to a screw dislocation was singular alondighecation line, and worse, it did not
agree with the solution of classical elasticity theory agéadistances, which it should have.

We shall then discuss our [13] axially symmetric solutiofishe gauge field equations that
are analogous to screw dislocations and wedge disclirmtMe showed that the gauge field equa-
tions indeed allowed for a solution that is devoid of bothhefge deficiencies. Later, Edelen [14]
also obtained the same solution. We also argued [13] thadietination cannot arise from the
action of SO(3), which seems to be the currently accepteqt mbiview [15]. Subsequently, we
calculated [16] the interaction between two parallel scdésiocations and showed that the stress
fields of screw dislocations, and interaction between themn,be obtained by multiplying the cor-
responding expressions in classical elasticity with aensal function [1krKj(kr)], wherer is the
distance of the field point from the dislocation line;* is a characteristic length(core radius).
andKi(kr) is the modified Bessel function of order one. The correcttgmiuof the gauge field
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equations that correspond to the edge dislocations wasvadalale till recently. Very recently,
Lazar [17] was able to obtain an appropriate solution fordtge dislocation by considering a
more general form for gauge field Lagrangian [18, 19].

Presuming that the gauge theory of Kadic and Edelen [11]riesconly the topologically
stable defects, Kroner [20] made an observation that tl@srthis not closed, and he suggested
that a unified gauge theory that incorporates separate deldgof dislocations and point defects
would be necessary. In section 4, we show that in additioméotopological defects, nontopo-
logical defects like the point defects also can be descrilyethe samegauge theory- there is no
need to introduce extra gauge fields. The problem of distatatileup is taken up in section 5.
We considered the problem of pileup of parallel screw defions along a line and showed [21]
that this ensemble is unstable if the density of dislocatierceeds a limiting value. Finally the
conclusions are brought out, and a list of open problemsiaogissed in section 6.

2. Introduction to Gauge Theory

At the fundamental level, Physics is study of symmetry aibgdh variational principle. In
the field theoretic approach, we are concerned with the sjraeeevolution of a set of fields
{Wa(X)}. The analysis proceeds by setting ulpegrangian lo({ g (X)},{0aWa (X)}), On the basis
of symmetry considerations. Hex® denotes the space-time coordinates (X, y, zAts1,...,4
andda = d/dx”. The space-time evolution of the fields is obtained by derimanthat theaction
S= [d**Lo({Wa (X)},{0aWa(X)}) is an extremum. Using theummation over repeated indices
convention, the resultant Euler-Lagrange equations cawiben as

0S Jdlo P dlLo
= — UA

51.Ua aq-’a 0((9All-’a)

We now explore the consequences of symmetry. Yang-Milpetyf gauge theories are based
on transformation properties of tHe&J, (x)} fields with the space-time unaltered, whereas gravity
type of gauge theories are based on space-time symmetriesard\toncerned with Yang-Mill’s
type of gauge theories. Lgtbe an element of a continuous group of transformat®tizat depends
on a set of parameters. Consider a global transformati@ngftbup parameters are independent of
the space-time coordinateg), — (U, = gy This is asymmetrytransformation if and only if the
changedl in the Lagrangian is a four-divergence so that the acB@invariant:

=0 2.1)

SLo=Lo ({Wa},{0alWga}) — Lo({Wa},{OaWa}) = Iax” (2.2)

The above condition corresponds to existence of a conseweentJ” = x* — %6%.

In gauge theories, the above mentioned global gauge imgriegs promoted to local gauge
invariance. That, is the the group parameters are madeidasabf space-time coordinates. It is
clear that the action will no longer be invariant in view oétfact thatdng # 0. The idea is best
illustrated with the help of a simple example. Consider acetomplex scalar fieldgs and ¢~
(o = 1,2) described by the Lagrangian

Lo({Wa},{0aWa}) = (Ba)(0%Y)* —V (¢*y). (2.3)
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It is easy to see that the transformatiph= gy = ex(iq0)y is a symmetry transformation. The
set of transformations comprise the gauge grdip) andJ* =iq6 [¢* (9 ) — Y(d”y)*] is the
conserved current. Now let us consider tbeal action /' = expigf(x))y of U(1). The above

is not a symmetry transformation @6 # 0. The reason for the lack of invariance is the fact that
daly does not transform likgy. Symmetry can be restored by replacing the ordinary dérast
Op by the covariant derivativeBa defined asdyn — Da = da — igAa S0 that(Day)’ = g(Day).
This procedure, known aminimal coupling involves introduction of a new set of field#\a}
which transforms in accordance with the rgle— ¢/ = exp(igf(x)) @ = Ax — A, = Aa+ Ia0.
Dynamics of these gauge potentials also have to be incdgebta make the theory complete. We
need to add a gauge field Lagrangianto the original Lagrangiamy and apply the variational
principle to determine the gauge potentials self condilstetit can be seen that the gauge fields
Fae = dpnAs — dsAn are gauge invariant. This suggests thgtcan be written down in terms of
invariants that can be constructed from the gauge figjgs For examplel4 = —%FABFAB for
electrodynamics.

In the above example, the gauge group is abelian. The agddgsbmes a bit more involved
if the gauge group is non-abelian. L®tis non-abelian with its generatofg,} satisfying the Lie
algebralys, o] = CS,¥e. Then the covariant derivatives are defined through théioala

OAD — DA = Ol + YaWR T, (2.4)
where{Wy} are the gauge potentials. The gauge fi€lfisare given by the relation

[Da,De] = FigVa, Fi = 0aWE — JaWi + CRMNVRWE (2.5)

The gauge field Lagrangialny can now be expressed in terms of the invariants that can be
constructed out of F2;}. It can be seen that the gauge figld;} is nonlinear in the gauge
potential {Wg}. This implies that the equations of motion of the gauge gattsnwill, in general,
be nonlinear.

3. Gauge Theory of Elastic Continuum

Let a material point in the reference configuration of anr@ut elastic continuum be repre-
sented by the space-fixed position vectpand upon deformation, let it move to a new paint X
+ U, whered is the displacement. In the field theoretic study of the Elassponse, one starts with
the Lagrangian
j
Lo— %paj %‘L—‘: _ % A (Tr(e))2 + 2uTr(e)] 3.1)
The Strain tensog; is given by

1
8j = E <c}kuk7j + 5jkuk’i + 5|<|uk1iu'7j) (3.2)

It can be seen that the action is invariant under the rigid/bodtionj — 1ij’ = gij, whereg
is any element of the Euclidean grotg3) in three dimensions. Note thEt(3) is the semidirect
productSQ(3) > T(3) of the rotation grousQ(3) with the translation grouf (3).
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3.1 Local Action of T(3)

It is now well established [13, 15] that both dislocationsl alisclinations can be described
in the gauge theory by the inhomogeneous actiofi (&). The consequences of gaugiS@3)
are still not understood. However, that is beyond the scdpgheopresent paper. For simplicity,
we shall restrict ourselves to linear strain. This implieattthe distinction between contra- and
co-variant indices can be glossed over. We shall also ceneialy statics. The action (see Eq. 3.1)
is invariant under the global transformatian — n/ = n; + bi, whereb; is a constant translation.
Invariance under the local transformatigh— n/ = n; + bj(x). necessitates introduction of the
covariant derivative

Djui:(?jui+(nj (3.3

where @; are the gauge potentials. Whgn— n/ = n; +bj, the gauge potentials transform ac-
cording to the rulep; — (g’l = @j — djbi. du; and@; can be interpreted as the elastic and plastic
distortions. We can now construct the gauge invariantrstgiand gauge fieldj.

1
Bij = 5 (Uj +Uji+ @ + i) (3.4)
Tijk = k@j — 9@k (3.5)

3.2 Simplest Lagrangian and the field equations

The simplest gauge field Lagrangiag that Kadic and Edelen proposed [11]4STjk Tij.
As mentioned in the introduction, there is a need to consaderore generaly to describe edge
dislocations. We shall return to this point in section 3.3.8e total Lagrangian then becomes

1 S
L:—E[)\(Eii)z‘i'zuEijEij] —ETijkTijk (3.6)

The corresponding Euler-Lagrange equations are given4y [1
Ui kk+ (L + D) Ukki = — [@ik + Ok + L@ ] (3.7)

@il — @ik — K2 [@k + G + L Si] = K2 Uik + Uk + Ly 8] (3.8)

Herek? = p/sansL = A /u. The expressions for the dislocation density tensmy }, Burgers
vector {b; }, incompatibility tenso{©;; } and Frank vectofQ;} (for disclinations) are then given

by
Qij = & Pjl k, bi = fsaijdsj (3.9)

1
8 = ~EikmEiln 5 (@ + @) > Qi = fseljdsi (3.10)

3.3 Solutions of the gauge field equations

Kadic and Edelen [11] took the view that dislocations andliations arise respectively from
breaking ofT (3) andSQ(3) invariance.
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3.3.1 Screw dislocation

The Burger’s vectobs(p) (at a distance from the dislocation) that they obtained from their
solution of the gauge field equations for a screw dislocationgZreads as [11]

bs(p) = bk pKi(kp) (3.11)

It can be seen thdiz(p) — b for kp << 1, andb\/zzpe"‘ﬁ’ for kp >> 1. Clearly, this does not
agree with the continuum elasticity solution fep >> 1. The near fieldK’p << 1) solution
matches continuum elasticity results, whereas the far $ieldtion doesn't! Their solution for the
stress fields also show similar unphysical limiting beharid<adic and Edelen’s suggestion that
the near field solution be continued#o >> 1 using lattice periodicity is not tenable.

We were able to show [13] that the very same gauge field equgafieq. 3.7 and 3.8) yield
solutions analogous to the screw dislocations and wedg#irgifons of classical elasticity. That
is, gauging ofT (3) is sufficient for obtaining both dislocations and disclioas in an isotropic
elastic continuum. For screw dislocation alangvé obtained [13]

bj(p) = Sjab[1— KpKa(kp)] (3.12)

aij (p) = 0¥ [1 - kpKy (k)] (3.13)

Edelen gave the same solution in 1996 [14]. It can be seeftitbatress and strain are finite along
the dislocation. The solution matches continuum elagtisdlution forkp >> 1, as it should.

2
We also note that the self energy% [1— kpKi(kp)]?In(kp), and that too does not have any
divergence.

3.3.2 Wedge disclination

Let us consider a wedge disclination alandri continuum elasticity@; = §36;3Q5(p), and
the nonvanishing components of the stress tensor are gjven b

___ Ko X 1 g, B2 X1

HQ XX

O12= 1V p2 O33 =V (011 + 022) (3.15)
In gauge theory, we get [13]
8 = 83055 Ko(kp) (3.16)
Q;j(p) = 53Q[L— kpKy(kp)] (3.17)
aij (p) = 0521 — kpKy(kp)] (3.18)

Like in the case of the solution for screw dislocation, we fthet gj; are bounded along the
disclination line.
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3.3.3 Edge dislocation

For the case of the edge dislocation, it is easy to prove thaafution of the formg; =
f(p)g'assical exists for the gauge field equations 3.7 and 3.8. One of trepnsafor nonexistence
of a solution of the gauge field equations that resembles ga didlocation could be that the gauge
field Lagrangian proposed by Kadic and Edelen is too resteictThere have been efforts to try
other forms ofLg. Drawing analogy with gravity, Malyshev [18] used the cuuva scalar asg
(Hilbert-Einstein form). However, his 'edge dislocaticsolution does not agree with continuum
elasticity solution for largep. Lazar [17] used the expressidi) (a(11>'l'i ik +a(22>Ti ik +aé3)'l'i ,-k)
in place ofsTk Tij with appropriate choice of the coefficienfs;} to get a solution that agrees
with continuum elasticity solution for large. The solution for the screw dislocation and wedge
dislocation, discussed earlier, remain unaltered for¢h@ce ofLg as well. To be specific,

1
DT =Tk =@ T = Tije, @i = (& Tk + STijt) » O = 3 (Tijk + Tii + Tij) (3.19)

1
2
The components of the stress tensor are given by

O11 = 02f, 01p = —010-f, 020 = 07 f et (3.20)
wheref is stress function

ub

'="2n1 v

s2 |In(p) + 03 (1 KpKy(Kkp) (3.21)

oij is bounded agp — 0, and agrees with continuum elasticity solution wixgn>> 1

0.6

0.5¢ N

Gauge Theory
0.4r = Continuum Theory

Kp

Figure 1. Magnitude of the force between two parallel dislocationsdsinction of the dimensionless
distancex p between them. The force divergesd =0 in continuum theory, whereas it vanishes in gauge
theory.
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3.4 Interaction between Dislocations

Force between two screw dislocations with Burger's vedtgrandb, parallel toZand sepa-
rated byR s given by [16]

. b1 b A
-

R [1- kRK;(KR)|R (3.22)
We have already seen that in the gauge theory, the sifeata distanc® from a screw dislocation
is [1— kKRKi1(kR)] times the corresponding expression in continuum elagtibigory. It is inter-
esting to note that the force between the dislocations iythee theory i$1 — kRK;(kR)] times
the force given by continuum theory, andt [1— KRKl(KR)]2 times as one would have naively
expected. As can be seen from Fig. 1, the force between tlaedi®ns tend to the continuum
elasticity solution whemp > 1. More importantly, the force vanishes when the two didioos
approach each other, regardless of the sign of the Burgectoss.

4. Spherically symmetric solutions- |

We found that there exist axially symmetric solutions of gage field equations that are
in one-to-one correspondence with the well known lineaecksfof the elastic continuum. These
solutions agree with the corresponding continuum elagtsalutions for large distances. However,
the gauge field solutions are well behaved along the defeet.li In other words, dislocations
and disclinations are line singularities in continuum &ty theory, whereas these defects are
extended objects with a core in the gauge theory. In thiSsecive shall examine spherically
symmetric solutions of the gauge field equations, and coenjpase solutions with the well known
continuum elasticity solutions for point defects.

Before discussing the most general solution, we shall fassidler theansatz
U (F) =xV(r), @ (F) = &jh(r) (4.1)

Our aim is to look for solutions such that the magnitude ofdisplacementV (r) and the plastic
strainh(r) are bounded every where. One of the ways to proceed furtheldvixe to substitute
Eqg. 4.1 in the the gauge field equations (Eq. 3.7 and 3.8), lawdl abtain the equations to be
satisfied by (r) andh(r). We find that the two function¥(r) andh(r) satisfythree equations,
which can be simplified to two. Another method proceeds by disaining the Lagrangian with
the above definition for the matter fielg((') and gauge potential@; (), and then obtaining the
field equations satisfied By(r) andh(r). Both the methods lead to the same equations. In what
follows, we describe the latter method. The minimally cegjpstrain tensor is given by

By = &) (V +h) + v 4.2)
and the minimally coupled Lagrangidn reads as
Lo=—(3A +2u) {g(v +h)Z2r(V+ h)V/} - %(/\ +2u)rav’2 (4.3)
The gauge fields are given by

1
Tijk = Qe = Picj = (A% — Owxy) - WTk =0, @Tp =Tix, @Tix=0  (4.4)
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Since only@T; Tijk is nonzero, the unique quadratic Lagrangian of the gaugisfiglgiven by
s
Lo = —5TikTijk = —2sH? (4.5)
In the above equation¥, corresponds to differentiation wfwith respect ta', and so on. The field

equations are obtained by extremizing the ac&nh| = [ dr r2L(V,V’,h,i). More explicitly,

" ! 3L+2 / — A
rv +4V+<L 2>h O’L_H (4.6)
1/ g /_L+2 2 / _ 2 _ E 3L+2
W'+ Zh K2 [rv/+3v+3n) = 0, k% = (&) T (4.7)
Most general solution of Egs. 4.6 and 4.7 can be shown to be
A B
theXp(f)ngexp(—EHC, §=Kr (4.8)
3L+2\[B D
- (T57) |aerven-o- e -vew®| +5-c @9

C is irrelevant and can be set to zero. Notice presence of #wsichl solution of point defects
D/&3%in Eq. 4.9.

4.1 Boundary conditions
It can be seen that no global solution exists wiithandh bounded for al€. Therefore we try
a piecewise solution

h = Mexp(§) + =L exp(—&)

3

A
'3
v:( )[ (€ + Dexp(—&) -~ e - 1>exp<f>] e

& &3

for é§ <¢,,and

h= %GXD(EH%GXD(—E)

- (352 [Eiervewi-o - B vewi)| + %

for £ > &,. The aim is to determine the constawtg Ay, B1, By, D1, D> and &, by demanding
continuity ofV andh, and if possible, their derivatives, &t= ¢,. It turns out that continuity o
andh can be enforced, but, not of their derivatives. It is inténgsto note that the value @, can
be uniquely determined to be unity. The final solution is gibg

v (2) Ecosi‘(fi{s—sinh(f)7 he _ (2) <3LL122> sin;(f)j (4.10)
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Figure 2: The displacement and its derivative as a function of the dimensionless deg&n= kr. u is
continuous and vanishes at the origin. It's derivativengsiar até =1.

1

— he)
dh(@)/dE)

3

Figure 3: The gauge potentidd and its derivative as a function of the dimensionless dedn= kr. his
continuous every where. It's derivative is discontinuou& al

foré <1, and

V= <i> [1—sinh(1) (1+ &)exp(—&)], h=—asink1) ( (4.11)

L+2 > exp(—¢&)
z3

3L+2 &

for £ > 1. ais a parameter that decides the strength of the defect.
As in the case of dislocations and disclinations, the pod@fiects are also extended objects in
the gauge theory. There is a core for the point defect wittadfus~ 1/k. For largeé, the present

10
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solution matches the classical solution. We find that thplaéement, strain, stress and the self
energy are all bounded.

4.2 Spherically symmetric solutions- Il

In the previous section, we found a spherically symmetrlatam of the gauge field equa-
tions that correspond to point defects. The displacemedttla® gauge fields were continuous
every where; however, the derivatives were discontinudus al. We now consider the most
general solution of the gauge field equations with the aimis€alering solutions with better
characteristics.

Following Parthasarathgt al[22], the most generansatZor the spherically symmetric static
solution of the field equations can be written as

ui(r) =xV(r)= ﬁu(r) (4.12)

/

@) = 8 (1) 0 | +0(0) |-+ 8100 @19

There is no loss of generality in writing the function thatltiplies xx; as[h'r 4+-g(r)]. We have
written it in that particular form in view of the simplicityfdhe resultant equations of motion. We
note that the displacement, gauge potentials and hence¢iss fields are boundedrf (r), rf (r),
r2g(r) andh(r) are bounded. The minimally coupled str&if and rotational straiy; are given
by -

Eij = & (v+h)+¥(v’+h’)+>qx,-g(r) (4.14)

wWj = &jnXn f(r) (4.15)
The minimally coupled Lagrangian then reads as

220 (V4 19)° (4.16)

3~ ~ o~
Lo=—(3A +2u) Ev2+|rV(v’+|rg)
Notice that the functiorf (r) appears only ir;. That is, nonvanishing corresponds to nonzero
rotational plastic strain, and it is relevant only in medighwionzero rotational elastic constants.
We also note that the functions andh appear only in the combinatiod = (V +h) in the ex-
pression for the straifj; and the Lagrangiahy. The gauge fieldSix = @j«x — @« j are given

by
Tijk = 26k T+ (&ijnxic— Eiknxj)? '+ (dkXj — &jX) g (4.17)

We see that the gauge fields depend onlyf @ndg. The simplest gauge field Lagrangian is given

b
d s

2
In the gauge field Lagrangian aldois decoupled from the other fields. For the isotropic elastic
continuum that we have been considering, we thus find thatirrelevant;V andh occur in the
combinationV = (V +h); henceh can be gauged away. Thus we arrive at the Lagrangian

Lg=—>TijTijk = —25r°07 — 25 [6f2 + 4rf f' +r2f?], (4.18)

1

L=—(3A +2u) gVZJr Vv (V' +rg) 2()\ +2u)r? (V' + rg)2 — 2sr%g? (4.19)

11
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It is interesting to note that derivative gfis absent irL.

The field equations obtained by extremizing the ac8Mg] = [drr?L(V,V’,g) are

4 L+4
\VAEA VL "2 —— =0 4.20
+r +rg’ + <L+2>g ( )
3L+2\V c 4s
Vi ([ =22 = )g=0,c= ——— 4.21
Jr<L+2>r+(r+r)g ¢ p(L+2) (4.21)

Using the above equations, it is possible to express thdifum¢ in terms ofg. Substituting that
expression foW, we get

¢+§q—xﬁzo (4.22)
170, 4
Vo2 [rg 4 (—Hz) g] (4.23)

4.3 Solution of the field equations

The most general solution of the above equations can beewiiitt terms of the two linearly
independent solutiong; (§) andgz (&) of Eq. 4.22 which are given by

1 1-
0§ = Trte L glf) = T (4.24)
Thus the general solution fof is given by
1 4
V(&) = AA(E) +BV(8) (&) = — 5 |£6() + 5 8i(&) (4.25)

A andB are the same in the expressions for bgtandV. It can be seen thafV; and &2g; are
unbounded ag — 0. However, we can obtain a solution bounded at 0 by choosing B = -Ag;
andV; are well behaved a& — o, whereagy, and, hencey, are not. Hence the solution obtained
by demanding boundedness §¥ and &2g; at the origin cannot be continued for §ll Thus no
global solution exists such th&V and&2g are nonsingular a& — « as well as£ — 0. Hence we
now look for apiecewise solution

V(&) = AL(&) +BV2(E), 9(¢) = Aau(&) +B(&), for & <& (4.26)

V(&) =CVi(&), g(é) =Caqi (&), for & > &, (4.27)

Demanding continuity ofV and&?g at & = &, implies that the Wronskidg (£),92(&)) =0 at
& = &,, which is impossible for ang¢, > 0. Hence we conclude that the ansatz considered here
does not lead to a continuous valued solution for the digphent and the gauge potentials.

Given the fact that the secomhsatz(Eq. 4.13) is more general than the first one (Eq. 4.1),
the failure of the second ansatz to produce a physically mghn solution is surprising. The
reasons for the failure is currently under investigatiore Méve seen that the derivative lois
discontinuous in the final solution obtained by the fastatz The calculation of the gauge fields
Tijk in the secon@nsatzassumed existence of second derivativels, efhich, in retrospect, seems
to be untenable.

12
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0.9

: : : | == Gauge Theory
0.8F Classical

T N

n

Figure 4: Solution of the force balance equation for dislocationygl@s function of) for N = 2. There is
no solution ifn < n¢(2) ~ 3.14. Also shown is the continuum elasticity solution.

5. Dislocation Pileup

We now turn to gauge theoretic analysis of the dislocatideupi problem [1, 23, 24]. Con-
siderN + 2 identical screw dislocations of parallel zand lying betweerX = +I with the end
members fixed, and the others free. Our aim is to determinpdbitionsX; (j = 1,...,N) of the
free dislocations. Using the fact that the force on jfidree dislocation must be equal to zero, we
get

zf(Xj—Xk)+f(Xj+1)+f(Xj—1):0, (5.1)
kZ]
wherex; = X /I, andf(x) is the force between two parallel screw dislocations at ! x from
each other.

£ — LK)

™ , (5.2)

wheren=kl. In the continuum elasticity casg (~ «), {x;} are given by the zeros Q%PNH(X)
[23], wherePy(x) is the Legendre polynomial of ord&t. Our analysis [21] shows that only the
degenerate solutiody, o is possible in gauge theoryiifis less than a critical valug.(N). Consider
the caseN = 2. In view of the symmetry, we can assume= -X;. Figure 4 shows the solution
of Eq. 5.2 as function of). It is clear that there is no solution if < n¢(2) ~ 3.14. That is,
the system becomes unstable when the number of dislocatidretween the obstacles exceeds a
critical value. This implies that the dynamics of dislocas should be should be nontrivial when

n < ne(N).

5.1 Continuous distribution of dislocations:

When the number of dislocations is large, it may be exped@htive a description in terms
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of the numberdensityp(x) of the dislocations. Then the force balance equation besome

p00 (| [ avpf ey + 10t 1+ 10¢-2)) =0 (5.3)

In the classical limit ) — ), one gets the well known solution

1 N 1|/t 1-y? fy+1)+f(y—1)
=t | T ey (5.4)

It is obvious that the degenerate solutipfx) = NJ(x) exists for anyn in the gauge theory. It
can be shown [21] that a continuous, non-negative and nizaidé solution does not exist for
any finite n in the gauge theory. This implies that the correct way to descan ensemble of
dislocations should be in terms of the dislocation dengtysor and not in terms of the number
density.

6. Summary, Conclusions and Outlook

Many investigators have already shown that a gauge the@gdoan the inhomogeneous ac-
tion of the translation group (3) can account for both dislocations and disclinations in aste
continuum. The present work has shown that even a non-tigabldefect like the point defect also
can be described the the same gauge theory. That is, theseneeal to have separate gauge fields
for dislocations and point defects. Gauge theory providphysically meaningful description of
the structure of dislocations, disclinations and poined&sf. All these defects have got a core, and
the stress fields produced by them are bounded every wherbaWdeseen that the force between
two dislocations vanishes when they approach each othardiegs of the sign of the Burger’s vec-
tor of the two dislocations. Through the study of the distmrapileup problem, we infer that the
dynamics of dislocations should be nontrivial when themiber exceeds a limiting value. We have
also seen that it is necessary to describe an ensemble ofatisins in terms of the consolidated
dislocation density tensor, and not the number density.

Interaction between point defects, point defects and cligions, as well as mixed disloca-
tions remain to be done. The consequences of breg&®@) symmetry is yet to be explored.
Gauge theoretic study of media with anisotropy or nonzetatianal elastic constants would be
interesting. The gauge theoretic solutions are expectdm tmore appropriate for the study of
mechanical and electronic properties of small systems. ahtiqular, it would be interesting to
study the changes in electronic and magnetic propertiemafl systems with dislocations. It is
important to know how the presence of the underlying lattioeild modify the results of the gauge
theory. Description of production (and annihilation) adlas incorporation of dissipative forces
are the other unfinished tasks.
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