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1. Introduction

It is well known that during plastic flow of crystalline materials dislocations, the carriers
of plastic deformation tend to form nonuniform, highly organized structures. Several analytical
models (the concept of Low Energy Dislocation Structure proposed by Kulhman-Wilsdorf [1], the
models of Holt [2] and Rickman & Viñals [3] that apply irreversible thermodynamics analogy, the
reaction-diffusion approach elaborated by Walgraef and Aifantis [4], the concept of the dislocation
sweeping mechanism developed by Kratochvil et. al. [5], andthe Ananthakrishna model [6, 7] of
coupled nonlinear rate equations for the dislocation densities have been developed since dislocation
patterning was first observed.

Due to limitation of continuum models to account for the details of the underlying physical
mechanisms governing dislocation motion and interactions, discrete dislocation simulations have
been proposed as an alternative to continuum phenomenological approaches mentioned above (see
e.g. [8, 9] for a review of various continuum and discrete dislocation simulation methods proposed
to address the problem of dislocation patterning).

An alternative method which was developed as a compromise between discrete dislocation dy-
namics arguments and continuum approaches for modeling theevolution of dislocation populations
at the mesoscale is the so called stochastic approach [10, 11, 12, 13].

A self-consistent mean field approach for dislocation interactions was developed by Groma
[14] starting from an equilibrium BBGKY-like hierarchy of dislocation distribution functions cor-
responding to the Kirkwood approximation in the plasma physics. Later these continuum equations
were developed further [15], introducing new gradient terms, by taking into account also the two-
body distribution functions.

The use of projection operator techniques developed by Willis and Picard [16] for coupled
quantum mechanical density matrices has become increasingly common. This technique was suc-
cessfully used for classical nonideal gas interacting through two-body forces and for quantum op-
tics [16], two-dimensional turbulence [17, 18], and self-graviting systems [19].

The projection operator techniques which are standard in statistical mechanics are applied
here to a system of interacting dislocations. We are interested here in the relaxation of an initially
uncorrelated system towards the equilibrium. We chose at random a reference dislocation driven
in the first approximation by the smooth self-consistent mean-field velocity induced by a ,,sea of
field dislocations” and rapid fluctuations arising from the departure to the mean field. The starting
point of our analysis is the Liouville equation for theN-particle distribution function in the phase
space. Since our system consist in a large number of dislocations, such an analysis provides much
more information one can actually interpret. Consequentlywe would like to describe the system in
some well-defined average sense by introducing differential equations for the time evolution of the
one-particle probability density in a one-particle phase space.

In the next sections we revisit the dislocation motion in thecrystals and the projection operator
formalism. Then we apply this formalism to our dislocation system, deriving an exact equation for
the time evolution of the one-particle probability density. In this context the dislocation velocity
fluctuations in a nearly homogeneous, parallel, straight edge dislocation system is studied. It is
shown that the distribution function has a Gaussian core andan algebraic tail. A well-defined non-
vanishing self-consistent mean velocity field is also isolated for which we recover precisely the
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same expression as Groma obtained [14] by a truncation of theBBGKY hierarchy of dislocation
distribution functions.

2. Dislocation motion in the crystals

Dislocation motion in the glide plane is in the direction of Burgers vector for edge dislocations
and orthogonal to the Burgers vector for screw dislocations. Screw dislocations can also cross slip
between glide planes. The motion of a dislocation perpendicular to the glide plane is called climb.

Due to the long-range nature of interaction forces the internal force acting on a reference
dislocation is the sum of forces created by all the other dislocations of the system. The force from
a test dislocationj acting on the reference dislocationi is given by the Peach-Koehler equation:

F ji = (biσ j
int)× l i, (2.1)

wherebi is the Burgers vector andl i represents the sense vector of the reference dislocation. If the
test dislocation is in different slip geometry, the stress tensorσint is determined by transforming
the stress tensorσ of the test dislocation into the reference coordinate system. The total stress
tensor acting on the reference dislocation can be computed by summing up contributions from all
dislocations in the system.

It is widely accepted that if the crystal has a large Peierls barrier, the inertial forces arising
from the dislocation’s acceleration are negligible compared to the drag forces, which are taken to
be proportional to the dislocation velocity. Then the glideand climb velocity ofith dislocation can
be given by

vi
g = ΓgFi

g, and (2.2)

vi
c = ΓcFi

c. (2.3)

whereF i
g and F i

c is the net force in the glide and climb directions (the sum of Peach-Koehler
force projections produced by all the other dislocations tothe glide and climb direction) andΓg,c

represents the mobilities in the glide and climb directions.

3. The projection operator formalism

Let us consider a collection ofN + 1 parallel straight edge orN + 1 screw dislocations posi-
tioned at the pointsr i , i = 0,N in the xy plane perpendicular to the dislocation lines. We select
one of these dislocations, for example dislocation 0 and call it the reference dislocation. The other
dislocations1,N will be referred as field dislocations. The correct startingpoint for the analysis of
the dynamics of our dislocation system is presumably the Liouville equation for theN+1-particle
distribution functionµ(r , r1, r2, . . . , rN, t) of the system

∂ µ
∂ t

+
N

∑
i=0

∂
∂ r i

(µvi) = 0, (3.1)

wherevi = vi
g +vi

c is the velocity ofith dislocation according to Eqs. (2.2) and (2.3).

3
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If the reference dislocation is described by the variablex≡ r , and theN-dislocation field by
the variabley ≡ (r1, r2, . . . , rN), then we can define, following the original notations of Kandrup
[19], the one- andN-particle distribution functionsf (x, t) andg(y, t) as

f (x, t) =

∫

dyµ(x,y, t), (3.2)

g(y, t) =

∫

dxµ(x,y, t). (3.3)

The composite distribution functionµ can be written in the form

µ(x,y, t) = f (x, t)g(y, t)+ µI (x,y, t). (3.4)

If our system initially is completely uncorrelated, then the mathematically well-defined problem is
to obtain the solutionsf (x, t) andg(y, t) subject to the initial conditions

µI (x,y,0) = 0, (3.5)

g(y,0) =
N

∏
i=1

f (yi ,0). (3.6)

The Liouville equation (3.1) can be written formally as

∂ µ(x,y, t)
∂ t

= −iLµ = −i(L0 +Lsys+LI)µ , (3.7)

where the operatorsL0 andLsys act respectively only on the variablesx andy, whereas the interac-
tion Liouvillian LI acts upon bothx andy. One can define a new function, supposedly ,,relevant”
function, as

µR(x,y, t) = f (x, t)g(y, t). (3.8)

In order to obtain decoupled equations forµR andµI we introduce the time-dependent projec-
tion [19, 16]

P(x,y, t) = g(y, t)
∫

dy+ f (x, t)
∫

dx− f (x, t)g(y, t)
∫

dx
∫

dy (3.9)

with the property that

P(x,y, t)µ(x,y, t) = µR(x,y, t), and (3.10)

[1−P(x,y, t)] µ(x,y, t) = µI (x,y, t). (3.11)

One verifies thatP2(x,y, t) = P(x,y, t). Applying P and 1−P on the Liouville equation (3.7) we
directly obtain the coupled equations

∂ µR

∂ t
= −iPLµR− iPLµI (3.12)

∂ µI

∂ t
= −i(1−P)LµR− i(1−P)LµI . (3.13)

4
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By introducing the GreenianG (t, t ′) defined as [16]

G (t, t ′) = T exp

{

−i
∫ t

t ′
dt′′[1−P(t ′′)]L

}

, (3.14)

whereT is the Dyson time-ordering operator, we can write down the formal solution of Eq. (3.13)
as [19]

µI (x,y, t) = G (t,0)µI (x,y,0)−

∫ t

0
dt′G (t, t ′)[1−P]LµR(x,y, t). (3.15)

For an initially uncorrelated systemµI (t = 0) ≡ 0. Having this in mind from Eq. (3.12) one gets

∂ µR

∂ t
= −iPLµR−

∫ t

0
dt′PLG (t, t ′)[1−P]LµR(x,y, t ′). (3.16)

By integrating this equation over the variablesx andy one gets [19]

∂ f
∂ t

+ iL0 f + i〈LI〉sysf =

∫ t

0
dt′

∫

dy∆tLIG (t, t ′)∆t ′LIg(y, t ′) f (x, t ′) (3.17)

and

∂g
∂ t

+ iLsysg− i〈LI〉
′g = −

∫ t

0
dt′

∫

dx∆tLIG (t, t ′)∆t ′LIg(y, t ′) f (x, t ′), (3.18)

where the abbreviations

〈LI〉sys =
∫

dy′LI (x,y
′)g(y′, t), (3.19)

〈LI〉
′ =

∫

dx′LI(x
′,y) f (x′, t), (3.20)

∆tLI = LI −〈LI〉sys−〈LI〉
′ (3.21)

were introduced.

4. Derivation of the kinetic equations

The Liouville equation (3.1) can be rewritten as

∂ µ
∂ t

+
N

∑
i=1

[

∂
∂ r

(µvi0)+
∂

∂ r i
(µv0i)

]

+
N

∑
i=1

N

∑
j=1
j 6=i

∂
∂ r i

(µv ji ) = 0, (4.1)

wherevi j denotes the velocity created by dislocationi on the dislocationj.
From Eq. (4.1) one can identify the different operators appearing in the decomposition (3.7):

iL0µ = 0,

iLsysµ =
N

∑
i=1

N

∑
j=1
j 6=i

∂
∂ r i

(µv ji ), (4.2)

iLI µ =
N

∑
i=1

[

∂
∂ r

(µvi0)+
∂

∂ r i
(µv0i)

]

.

5
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The mean-field velocity created by the field dislocationi on the reference dislocation can be
computed as

〈vi0〉 =

∫

f (r i , t) vi0 dr i . (4.3)

The total mean-field velocity experienced by the reference dislocation is given by the sum of
all contributions of the field dislocations

vsc =
N

∑
i=1

〈vi0〉 =
N

∑
i=1

〈v10〉 = N〈v10〉. (4.4)

By introducing the dislocation density functionsρ(r , t) = N f(r , t) and taking into account Eqs.
(2.2) and (2.3) one recovers the same expression for the self-consistent stress as Groma obtained
by the truncation of the BBGKY hierarchy of dislocation distribution functions [14]. However, the
projection operator approach has the advantage over the standard BBGKY approach because does
not require us to introduce a hierarchy of two- and more dislocation distribution functions.

After straightforward integrations by part, one verifies that

i〈LI 〉sysf =

[

∫

dy′g(y′, t)
N

∑
i=1

vi0

]

∂ f
∂ r

+ f

[

∫

dy′g(y′, t)
N

∑
i=1

∂vi0

∂ r

]

=
∂
∂ r

( f vsc), and (4.5)

i∆tLI f =
N

∑
i=1

∂
∂ r

{ f [vi0−〈vi0〉]}+
N

∑
i=1

∂
∂ r i

{ f [v0i −〈v0i〉]} . (4.6)

Using thatvi0 = −v0i , we define the fluctuating velocityV0i(r , r i , t) that theith field dislocation at
r i exerts upon the reference dislocation atr as

V0i(r , r i , t) = v0i(r , r i , t)−vsc(r , t), (4.7)

and the fluctuation velocity that the reference dislocationexerts upon theith field dislocation atr i

as

Vi0(r , r i , t) = −v0i(r , r i , t)−vsc(r i , t). (4.8)

Now we can rewrite our expression for the operatori∆tLI in the form

i∆tLI =
N

∑
i=1

[

∂Vi0

∂ r
+Vi0

∂
∂ r

]

+
N

∑
i=1

[

∂V0i

∂ r i
+V0i

∂
∂ r i

]

. (4.9)

In terms of the fluctuating velocities one has then the equation of motion

∂ f
∂ t

+
∂
∂ r

( f vsc) = S[ f ] =

∫

dy
∫ t

0
dt′

N

∑
i=1

[

∂Vi0

∂ r
+

∂V0i

∂ r i
+Vi0

∂
∂ r

+V0i
∂

∂ r i

]

×

G (t, t ′)

{

N

∑
j=1

[

∂
∂ r

{V j0g(y, t ′) f (r , t ′)}+
∂

∂ r j
{V0 jg(y, t ′) f (r , t ′)}

]

}

. (4.10)

The functionalS[ f ] in fact represents the influence of correlations upon the dynamics of the system.
The equation (4.10) is an exact differential equation forf (x, t) subject to the initial condition

µI (x,y,0) = 0. However, this equation is not directly soluble, since theother unknown function
g(y, t) is given by an equation of the form (3.18) depending in turn onf (x, t). The coupled sys-
tem of equations bears the same information as the initial Liouville equation and without further
simplification is untractable.

6
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5. Weakly correlated dislocation systems

5.1 Statistics of velocity fluctuations

An initially decorrelated dislocation system withµI (x,y,0) = 0 for sufficiently short times
remains decorrelated. Because of the assumed symmetry ofµ under dislocation interchange, the
choice of the reference dislocation is arbitrary. SinceµI (x,y,0) vanishes, in addition we must
demand that

µR(x,y,0) = f (x,0)
N

∏
i=1

f (r i ,0). (5.1)

We might assume that correlations among the field dislocations will not strongly affect the
reference dislocation (which will not be in general true) and expect that such an assumption would
be reasonable for time periodsδ t short compared with the time scale for development of strong
correlations. Then, for such time scales the distribution function

f (x, t −δ t)
N

∏
i=1

f (r i , t −δ t) (5.2)

can be evaluated at timet and the details of the dynamics and interaction among dislocations during
such very short relative timesτ can be encapsulated in the GreenianG (t, t −δ t).

For the sake of simplicity let us consider that our system is acollection ofN straight, parallel
edge dislocations with Burgers vectorb oriented parallel to thex axis and the dislocation line
parallel to thez axis, randomly distributed and confined within a disk of radius R. Furthermore
we assume that the dislocations have the same Burgers vectorb. We are particularly interested in
the ,,thermodynamic limit” in which the number of dislocations and the size of the domain go to
infinity (N → ∞, R→ ∞) in such a way that the dislocation densityρ = N

πR2 remains finite.
If the temperature is low, the dislocation climb can be neglected and the equation of motion of

ith dislocation (2.2) reduces to

vi ≡
dr i

dt
= Γgbi ∑

j 6=i

τ j
ind(x j −xi,y j −yi), j = 1,N (5.3)

wherer i ≡ (xi ,yi) denotes the position of thei-th dislocation and

τ i
ind(x,y) =

µbi

2π(1−ν)

x(x2−y2)

(x2 +y2)2 ≡ φi (5.4)

is the shear stress created by an edge dislocation (in an infinite domain), where the shear modulus
µ and the Poisson’s ratioν were introduced. Since the dislocations are randomly distributed, the
stressτ fluctuates.

The first problem to consider is the characterization of the velocity fluctuations. The velocity in
Eq. (5.3) is proportional to the shear stress, therefore finding the velocity distribution is equivalent
with finding the stress distribution function at a point where the dislocation is located.

The stress distributionPN(τ) in a system ofN uncorrelated, identical dislocation system can
be obtained as a direct application of Markov’s method [20] applied for several problems. As it

7
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was shown by Groma and Bakó [11], the internal stress distribution can be expressed as

PN(τ) =

∫ N

∏
i=1

ρd(r i)dr iδ (τ −
N

∑
i=1

φi) (5.5)

whereρd(r i)dr i governs the probability of occurrence of theith dislocation at positionr i . Using
the Markov’s method, we can expressδ (x) in terms of its Fourier transform

δ (x) =
1

2π

∫

exp(−iqx)dq. (5.6)

ThenPN(τ) becomes

PN(τ) =
1

2π

∫

AN(q)exp(−iqφ)dq. (5.7)

with

AN(q) =

[

∫ R

|r |=0
exp(iqφ)ρd(r)dr

]N

. (5.8)

If we suppose that the dislocations are uniformly distributed on average, thenρd(r) = π−1R−2 and

AN(q) =

[

1
πR2

∫ R

|r |=0
exp(iqφ)dr

]N

=

[

1−
1

πR2

∫ R

|r |=0
[1−exp(iqφ)]dr

]N

(5.9)

In the limit whenN → ∞ andR→ ∞ in such way that the densityρ = N/(πR2) remains finite, if
the integral in (5.9) increases less rapidly thanN, then the limiting processA(q) = exp[−ρC(q)]

where

C(q) =
∫ R

|r |=0
[1−exp(iqφ)]dr =

∫ R

0

∫ 2π

0

[

1−cos

(

qGb
cos(θ)cos(2θ)

r

)]

rdrdθ , (5.10)

with G =
µ

2π(1−ν)
, is permissible.

For small arguments cos(x) = 1−x2/2+O(x4) and we obtain

C(q) ≈
π
8

G2b2q2 ln

[

N
πρG2b2q2

]

. (5.11)

SinceC(q) diverges weakly (logarithmically) withN, we have the estimate

A(q) = exp

[

−
π
8

G2b2ρq2 ln

(

N
πρG2b2q2

)]

. (5.12)

WhenN → ∞,

A(q) = exp
[

−q2 π
8

G2b2ρ lnN
]

, (5.13)

and forq→ 0 we obtain

A(q) = exp
[π

4
G2b2ρq2 ln |q|

]

, (5.14)

8
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The stress distributionP(τ) is simply the Fourier transform ofA(q).

The core of the stress distribution function can be determined taking into account that for small
stresses the integral in Eq. (5.7) is negligible and we can use A(q) given by Eq. (5.13). Then the
distributionP(τ) is the Gaussian

P(τ) =

√

2
π2G2b2ρ lnN

exp

[

−
2τ2

πG2b2ρ lnN

]

(5.15)

The high stress tail of the distribution can be calculated from Eq. (5.14). This problem was studied
by Groma and Bakó [11] and was found that the tail of the distribution function decays algebraically
like τ−3:

P(τ) =
πG2b2ρ(r)

4τ3 (5.16)

For a nearly homogeneous dislocation system Eq. (5.9) has the form

AN(q) =

[

∫ R

|r |=0
f (r)exp(iqφ)dr

]N

=

[

1−
1
N

∫ R

|r |=0
ρ(r)[1−exp(iqφ)]dr

]N

(5.17)

Repeating the previous steps and taking into the account therelation between the velocity and stress
given by Eq. (5.3), one finds that the core of the velocity distribution function is Gaussian,

P(V ) =

√

2
π2G2Γ2

gb2ρ(r) lnN
exp

[

−
2V 2

πG2Γ2
gb2ρ(r) lnN

]

, (5.18)

and for large values ofV the velocity distribution decays algebraically:

P(V ) =
πG2Γ2

gb2ρ(r)

4V 3 , (5.19)

whereV = v− 〈v〉 is the velocity fluctuation around the local mean-field velocity given by Eq.
(4.4). The approximations used here are valid as long the factorization hypothesis given by Eq.
(5.1) is valid. In the strict mathematical limitN → ∞ the transition between the two regimes
given by Eqs. (5.18) and (5.19) is rejected to infinity andP(v) is purely Gaussian. However, the
convergence towards the Gaussian distribution is very slowand in practice we will always see the
algebraic tail in computer simulations.

The previous results are valid if the velocity fluctuations are calculated at a fixed point. In this
case it is no restriction on the possible values of the stress. However, if we are interested in the
stress experienced by the reference dislocation, the situation is different, since a dipole can form
when a field dislocation approaches the reference dislocation and our treatment which ignores the
correlations between the dislocations will break down.

The distribution of stresses in a system of dislocation dipoles was studied by Csikor and Groma
[21]. It was found that the core of the stress distribution function becomes Lorentzian, but the high-
stress tail of the distribution has an algebraic decay givenby Eq. (5.16). That means that the high
velocity tail of the distributionP(V ) remains still valid for a gas of dislocation dipoles.

9
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5.2 The kinetic equation

If we assume, that the trajectories of the dislocations betweent − δ t are determined by the
complicated GreenianG (t, t − δ t), for sufficiently short timesδ t, the approximation (5.2) intro-
duced in Eq. (4.10) leads to

∂ f
∂ t

+
∂
∂ r

( f vsc) =
∫

dy
∫ t

0
dτ

N

∑
i=1

[

∂Vi0

∂ r
+

∂V0i

∂ r i
+Vi0

∂
∂ r

+V0i
∂

∂ r i

]

G (t, t − τ)×

{

N

∑
j=1

[

∂
∂ r

{V j0 f (r , t − τ)
N

∏
k=1

f (rk, t − τ)}+
∂

∂ r j
{V0 j f (r , t − τ)

N

∏
k=1

f (rk, t − τ)}

]}

. (5.20)

In this approximation we have obtained a closed nonlinear integro-differential equation for
f (r , t) in terms of its past history.

Close to equilibrium, to a good approximation, we can consider that the dislocations are purely
advected by the equilibrium mean-field stress, therefore wecan replace the exact Greenian with
a smooth Greenian〈G 〉eq constructed formally with the averaged Liouville operator, since the
fluctuationV for N → ∞ is much smaller, than the equilibrium mean-field velocity〈v〉eq. In this
approximation Eq. (5.20) can be simplified considerably:

∂ f
∂ t

+
∂
∂ r

( f 〈v〉eq) =
∫

dy
∫ t

0
dτ

N

∑
i=1

[

Vi0
∂
∂ r

+V0i
∂

∂ r i

]

×

〈G (t, t − τ)〉eq

{

N

∑
j=1

[

V j0
∂
∂ r

+V0 j
∂

∂ r j

]

{ f (r , t − τ)
N

∏
k=1

feq(rk, t − τ)}

}

, (5.21)

where 〈〉eq represents the average with respect to the equilibrium distribution feq(r). After an
integration by parts over the spatial variables Eq. (5.21) reduces to

∂ f
∂ t

+
∂
∂ r

( f 〈v〉eq) =
∂

∂ rµ

∫

dy
∫ t

0
dτ

N

∑
i=1

N

∑
j=1

V
µ

i0 (t)〈G (t, t − τ)〉eq×

[

V
ν
j0(t − τ)

∂
∂ rν +V

ν
0 j(t − τ)

∂
∂ rν

j

]

f (r , t − τ)
N

∏
k=1

feq(rk) (5.22)

This equation resembles a Fokker-Planck equation in which the first term of the right-hand
side corresponds to a diffusion and the second term to a drift.

Assuming, that in first approximation the dislocations follow streamlines, after explicating the
action of the Greenian, we can rewrite Eq. (5.22) in the form

∂ f
∂ t

+
∂
∂ r

( f 〈v〉eq) =

N

∑
i=1

∂
∂ rµ

∫

dr i

∫ t

0
dτV

µ
i0 (t)

[

V
ν

i0 (t − τ)
∂

∂ rν +V
ν

0i (t − τ)
∂

∂ rν
i

]

f (r , t − τ) feq(r i) (5.23)

Since the field dislocations are identical, we also have

∂ f
∂ t

+
∂
∂ r

( f 〈v〉eq) =

N
∂

∂ rµ

∫

dr1

∫ t

0
dτV

µ
10(t)

[

V
ν

10(t − τ)
∂

∂ rν +V
ν

01(t − τ)
∂

∂ rν
1

]

f (r , t − τ) feq(r1) (5.24)
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The analytical expression of the velocity fluctuation correlation function and of the equilibrium
distribution feq(r1) need further investigations. Since these functions are notknown yet, we cannot
transform this integro-differential equation into a Fokker-Planck equation. However, regarding the
velocity fluctuations as Markovian random variables, and bymaking an appropriate guess for the
function feq, we might be able to evaluate the diffusion tensor and the drift term.

6. Conclusion

In this paper, we have provided a systematic derivation of the Landau equation for dislocations,
applying the powerful projection operator techniques to this problem. The kinetic equation can be
derived by focusing on a reference dislocation and considering its interaction with the remaining
,,field dislocations”.

There are different methods to obtain a kinetic equation forthe distribution functionf (r , t).
One possibility is to close the BBGKY hierarchy by neglecting the cumulant of the three-body
correlation function [14], [15]. However, the projection operator formalism has the advantage
over the standard BBGKY approach that it takes into account non Markovian effects and spatial
delocalization.

Some analytical properties of velocity fluctuation distribution function are determined for the
idealized case of a system of almost uncorrelated, straight, parallel edge dislocations in single slip
configuration. It was shown that the core of the distributionis Gaussian, while the high-velocity
tail decays with the third power of the velocity fluctuations. Due to the velocity fluctuations the
motion of the dislocations can be regarded as an effective diffusion and drift.

The analytical form of the diffusion cannot be determined for the moment. However, it seems
to be influenced by the autocorrelations of the velocity fluctuation. A numerical work in progress
by the author shows that the velocity fluctuations have long-term correlations and they are more
complex than the usual white noise effect. When memory effects are ignored, we obtain a Fokker-
Planck equation of the one-particle distribution functionfor the system close to equilibrium.

Eq. (5.24) resemble the equations of original Aifantis [22], W–A (Walgraef–Aifantis) [4], and
Groma-Zaiser models [23]. The equations studied in this paper correspond to conserved number
of dislocations, i.e. they do not describe dislocation creation and annihilation. However, it is easy
to lift this strong limitation by adding a source term to the right hand side of Eq. (4.10). Although
this is a very important issue, it is out of the scope of the present paper.
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