
P
o
S
(
S
M
P
R
I
2
0
0
5
)
0
1
7

Threshold-crossing statistics in diffusion with a
time-dependent control parameter

V Balakrishnan∗

Department of Physics, Indian Institute of Technology-Madras, Chennai 600 036, India
E-mail: vbalki@physics.iitm.ac.in

C. Nicolis
Institut Royale Météorologique de Belgique, Avenue Circulaire 3, 1180 Bruxelles, Belgium
E-mail: svn@meteo.oma.be

G. Nicolis
Centre for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Code
Postal 231, Boulevard du Triomphe, 1050 Brussels, Belgium
E-mail: gnicolis@ulb.ac.be

We study two important aspects of the diffusion of a free particle in the presence of a time-
dependent control parameter. The latter is represented by a friction coefficient that is a given
function of time. We solve the stochastic Liouville equation (the Fokker-Planck equation) for the
probability density of the particle in phase space, i. e., in both position and velocity. The exact
solution is then used to analyze the behavior of (i) the variance in the position, a global charac-
terizer of the system; and (ii) the mean rate of crossings of an arbitrary threshold in the position,
a local characterizer. The former is the more conventional descriptor of diffusive processes, but
the latter provides valuable complementary information on the dynamical behavior. Depending
on the long-time behavior of the friction coefficient, the asymptotic behaviors of both these char-
acterizers vary, and exhibit several cross-overs. This helps elucidate the nature of the interplay
between the destabilizing effects of the noise and the stabilizing tendency of the damping, as the
latter undergoes a controlled variation in time.
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1. Introduction

The stability of stochastically driven systems is a fundamental problem in dynamics that is
also very important from the point of view of applications. Among two general approaches to
this question, the more familiar one, via the moments of the dynamical variable(s), enables us to
quantify [1, 2] the extent of the dispersion about the mean value, the deviation of the mean value
from the typical value, the deviation of the distribution from the Gaussian form, and so on. It is
evident that the moments represent a global characterization of the system. At a more local level,
useful information may be obtained by analyzing the statistics of the crossings of some prescribed
threshold value by the stochastic trajectory [3, 4], as well as related aspects such as order statistics
and extreme value statistics [5]. These two approaches are complementary, and taken together they
provide a comprehensive view of the behavior of the system of interest.

In most analyses, it is generally assumed for convenience and tractability that the parameters
of the system are time-independent. While this is a reasonable assumption or approximation in
many situations, there are numerous other important instances in which it is not valid, ranging
from chemical and biological processes to atmospheric phenomena [6] and economics [7]. Time
dependence of one or more parameters frequently arises due to a systematic variation caused by
external factors, or from externally controlled forcing. Some work has been done on moment
dynamics in systems driven by white noise in the presence of time-dependent control parameters
[8, 9, 10]. More recently, both moment evolution and threshold crossings have been studied [11] in
systems driven by discrete (in particular, dichotomous) noise, the time-varying control parameter
being the rate of switching between the levels of the noise.

In view of the ubiquity of systems driven by noise whose correlation time may justifiably
be neglected in comparison with the other characteristic time scales present, we revisit some of
the simplest models of stochastic flows driven by white noise, but with a time-dependent control
parameter. In particular, we shall be interested in the interplay between the destabilizing effects
of the noise which leads to unbounded motion in the mean and/or variance, and the stabilizing
effect of an appropriate damping coefficient. The time-dependence could be in this coefficient
or in the amplitude of the noise (or both), but for definiteness we focus in this paper on the first
possibility. Threshold crossings, i. e., the crossings of some prescribed value or ‘level’ by the
system’s trajectory, will be one of our primary concerns. Now, it is known that the application of
various threshold-crossing formulas to variables directly driven by white noise leads to divergences
that arise because of the formally infinite variance of white noise. We circumvent this problem by
considering the corresponding flow in phase space. From a technical point of view, this amounts to
a tempering of the noise by integration, analogous to the manner in which integrating a Gaussian
white noise leads to a better-behaved object, namely, the Wiener process.

The outline of the rest of this paper is as follows. In Sec. 2 we consider the diffusion of a
free particle within the framework of the Langevin equation, but in phase space, and with a time-
dependent friction coefficient γ(t). The corresponding Fokker-Planck equation can be solved to
yield the time-dependent joint probability density P(x,v, t) in the position and the velocity of the
particle. In Sec. 3, we apply the formula for the mean number of threshold crossings to the case
at hand, and obtain an exact expression for the mean rate of crossings of an arbitrary threshold by
the position x(t) of the particle. The conditions under which this rate becomes independent of the
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amplitude of the noise are identified, and a general formula is obtained for the rate as a functional
of γ(t). In Sec. 4, using a representative family of functional forms for γ(t), we demonstrate sys-
tematically how the long-time behavior of the variance undergoes a sequence of cross-overs from
super-ballistic (∼ t3) to standard diffusive (∼ t) behavior, as the time dependence of the friction co-
efficient is changed from one that decays to zero as t → ∞, to one that becomes unbounded in this
limit. Concomitantly, the asymptotic (long-time) behavior of the mean level-crossing rate exhibits
a sequence of cross-overs from the ∼ t−1 behavior of the frictionless case to a limiting ∼ t−1/2

dependence when the friction coefficient diverges as t → ∞.

2. Phase space distribution for free diffusion with time-dependent friction

The diffusion of a free particle in one dimension is described by the Langevin equation in
phase space,

ẋ+Γx = ζ (t) . (2.1)

Here x is the two-component vector
(

x v
)T where the superscript T denotes the transpose, v =

ẋ, ζ (t) =
(

0 η(t)
)T , and η(t) is a stationary, Gaussian, δ -correlated Markov process (a white

noise), with
〈η(t)〉 = 0 , 〈η(t)η(t ′)〉 = q2 δ (t − t ′) . (2.2)

As stated earlier, we consider a time-dependent friction coefficient, so that the drift matrix Γ is
given by

Γ(t) =

(

0 −1
0 γ(t)

)

. (2.3)

The corresponding density in phase space, P(x,v, t), obeys a Fokker-Planck-like equation with drift
matrix Γ and diffusion matrix D = diag (0 , 1

2 q2) (q2 could also be time-dependent, in general). This
is the “stochastic Liouville equation”[12]

∂P
∂ t + v∂P

∂x = γ(t)∂ (vP)

∂v +q2 ∂ 2P
∂v2 . (2.4)

In the usual case, when the friction coefficient γ is independent of time, v(t) is of course the
Ornstein-Uhlenbeck process. In the present instance, v(t) is no longer a stationary random process.

To solve the master equation for P, one defines the matrix Green function

G(t) = T

{

exp
(

−
∫ t

0
Γ(t ′)dt ′

)}

(2.5)

where T denotes the time-ordered product, and the covariance matrix

σ(t) = 2
∫ t

0
G(t ′)DGT(t ′)dt ′ . (2.6)

Then, for sharp initial conditions (x0 , v0), we have 〈x(t)〉 = G(t)x0, so that the mean values 〈x(t)〉
and 〈v(t)〉 are linear combinations of x0 and v0 with time-dependent coefficients. The formal
solution [13] of the Fokker-Planck equation in this case is a Gaussian in x of the form

P(x,v, t) =
1

2π
√

∆
exp
{

−1
2

S11 (δx)2 −S12 (δx)(δv)− 1
2

S22 (δv)2
}

, (2.7)
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where δx = x−〈x(t)〉 and
∆(t) = detσ(t) , S(t) = σ−1(t). (2.8)

As mentioned in the Introduction, we focus here on the case in which the friction coefficient
γ(t) serves as the time-dependent control parameter, the variance q2 of the noise remaining constant
in time. We note that the product of two drift matrices of the form specified in Eq. (2.3) satisfies
the equation

Γ(t1)Γ(t2) = Γ(t1)γ(t2). (2.9)

Owing to this convenient property of the drift matrix, it turns out that G(t) and σ(t) can be evaluated
in closed form, and the solution for P(x,v, t) written down explicitly. In terms of the functions

φ(t) = exp
(

−
∫ t

0
γ(t ′)dt ′

)

, ψ(t) =
∫ t

0
φ(t ′)dt ′ , (2.10)

we find that the first moments are given by

〈x(t)〉 = x0 + v0 ψ(t) , 〈v(t)〉 = v0 φ(t) . (2.11)

Defining the functions

A(t) =

∫ t

0
φ 2(t ′)dt ′ , B(t) =

1
2ψ2(t) , C(t) =

∫ t

0
ψ2(t ′)dt ′ , (2.12)

we get

σ(t) = q2

(

C B
B A

)

, S(t) = σ−1(t) =
q2

∆

(

A B
B C

)

, (2.13)

where
∆(t) = q4 (AC−B2) = q4

{

∫ t

0
φ 2(t ′)dt ′

∫ t

0
ψ2(t ′)dt ′ − 1

4ψ4(t)
}

. (2.14)

For our present purposes (the study of the fluctuations and threshold crossings of the random
variable x(t)), it is helpful to simplify matters by eliminating the systematic drift that arises if 〈v(t)〉
is non-vanishing. Accordingly, we set the initial velocity v0 = 0, so that 〈x(t)〉 = x0 , 〈v(t)〉 = 0.
The explicit expressions that are then obtained also help us understand more closely, among other
things, the dependence of the level-crossing rate on the noise amplitude q2. The joint probability
density reduces in this drift-free case to

P(x,v, t) =
1

2πq2
√

AC−B2
exp

{

− A(x− x0)
2 −2B(x− x0)v+C v2

2q2 (AC−B2)

}

, (2.15)

where A(t),B(t) and C(t) have been defined in Eq. (2.12). Integrating Eq. (2.15) over v, we obtain
the positional probability density

P(x, t) =
1

√

2πq2 C(t)
exp
{

− (x− x0)
2

2q2 C(t)

}

. (2.16)

The fluctuations in x are then completely characterized by the behavior of its variance, which is
given by

σ 2
x (t) = q2 C(t) . (2.17)

The asymptotic behavior of C(t) is thus an immediate quantitative measure of the degree of stability
or instability of the system in various cases. We shall analyze this behavior in some detail in the
sequel, after deriving the results required for the analysis of threshold crossings in x.
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3. Threshold-crossing formulas

We recapitulate briefly some elementary results pertaining to threshold-crossing statistics for
a stochastic process x(t) whose sample paths are sufficiently regular—more precisely, mean square
differentiable [3, 4]. Let xth denote any prescribed threshold value of x. Consider the random
process y = θ(x− xth), where θ(x) stands for the unit step function. If crossings of the threshold
occur at ti , i = 1,2, . . ., we have

ẏ =
d
dt θ(x− xth) = ∑

i

δ (t − ti)
|ẋ(ti)|

ẋ(ti) . (3.1)

It is at once evident that ẏ is a pulse process in time, comprising δ -functions of strength +1
[respectively, −1] at up-crossings [respectively, down-crossings] of x th by the stochastic trajec-
tory. Hence the number of crossings of the specified level x = xth in a time interval (t1, t2) is
N(xth ; t1, t2) =

∫ t2
t1 |ẏ|dt. The mean value of this number is given in terms of the phase space den-

sity P(x,v, t) by
〈N(xth ; t1, t2)〉 =

∫ t2

t1
dt
∫ ∞

−∞
dv |v|P(xth , v , t) . (3.2)

Both up-crossings and down-crossings of xth are included in this formula. (The integral over v
from −∞ to 0 counts the mean number of down-crossings, while that from 0 to ∞ counts the mean
number of up-crossings.) The quantity

r(xth , t) =
∫ ∞

−∞
dv |v|P(xth , v , t) (3.3)

can be regarded as the instantaneous mean rate of crossings of the threshold concerned.
In the special case when x(t) is a differentiable stationary Gaussian process with zero mean,

Eq. (3.3) yields a stationary mean threshold-crossing rate[14]

rst(xth) =

(

σv
πσx

)

exp
(

− x2
th

2σ 2
x

)

. (3.4)

As an illustration, we can apply this formula right away to the case of a “Brownian oscillator”, i. e.,
a harmonically bound particle with a constant friction coefficient γ0, subjected to a Gaussian white
noise. The drift matrix in this case is

Γ =

(

0 −1
ω2

0 γ0

)

. (3.5)

There is, of course, no long-range diffusion in this case. Solving the corresponding Fokker-Planck
equation and proceeding to the long-time limit, we obtain

rst(xth) =
(ω0

π

)

exp
(

−γ0 ω2
0 x2

th
q2

)

. (3.6)

When xth = 0, the dependence on the damping coefficient γ0 and the noise amplitude q2 disappears,
and the rate reduces to ω0/π , the rate of zero crossings in the undamped, unperturbed oscillator—
i. e., twice in each period.
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The formulas above are no longer valid if the sample paths of x(t) are not differentiable. This is
what happens when x(t) is a one-dimensional diffusion process given by the stochastic differential
equation ẋ = f (x, t)+ g(x, t)η(t). The divergent variance of ẋ in this case implies that the mean
number of crossings of any threshold xth is infinite in any time interval. On the other hand, if we
consider dynamics in phase space, and it is the velocity v rather than x itself that is driven by the
noise η(t), then the process x(t) is sufficiently smooth to permit meaningful threshold-crossing
statistics. It is this fact that we exploit in order to obtain threshold-crossing statistics for free-
particle diffusion in the presence of an explicitly time-dependent friction coefficient.

We substitute Eq. (2.15) for P(x,v, t) in Eq. (3.3) and evaluate the integrals concerned. After
simplification, we finally arrive at the result

r(xth , t) =

√
AC−B2

πC exp
(

− A(xth − x0)
2

2q2 (AC−B2)

)

+
B(xth − x0)

C
√

2πCq2
exp
(

−(xth − x0)
2

2Cq2

)

erf
(

B(xth − x0)
√

2Cq2(AC−B2)

)

, (3.7)

where the functions A(t),B(t) and C(t) have been defined in Eq. (2.12). As q2 → 0, the threshold-
crossing rate vanishes extremely rapidly, like exp (−1/q2). On the other hand, as q2 → ∞, it satu-
rates to a value

√
AC−B2/(πC). The same expression is obtained, for arbitrary q2, for the the rate

of crossings of the starting point x0 itself: all dependence on the noise amplitude disappears in this
case, and we get

r(x0 , t) =
(

∫ t

0
φ 2(t ′)dt ′

∫ t

0
ψ2(t ′)dt ′ − 1

4
ψ4(t)

)1/2
/

(

π
∫ t

0
ψ2(t ′)dt ′

)

. (3.8)

Equation (3.8) provides us with a convenient and compact formula amenable to further analysis.

4. Behavior of the variance and the mean threshold-crossing rate

We are now ready to study the behavior of the variance of x, as given by Eq. (2.17), and the
mean threshold-crossing rate, as given by Eq. (3.8), in detail.

As our main interest is in the long-time behavior of these quantities, let us first dispose of the
short-time (t → 0) behavior very briefly. Since φ(t) ' 1, ψ(t) ' t in this limit, the leading short-
time behavior of σ 2

x (t) and r(x0 , t) is universal in the sense of being completely noise-dominated
and independent of γ(t): We find the super-ballistic behavior σ 2

x (t) ' q2t3/3, as expected, while
r(x0 , t) '

√
3/(2πt) . As we have already pointed out, the divergence of the threshold-crossing

rate precisely at t = 0 is unavoidable in white-noise-driven systems. For sufficiently short times, it
implies a logarithmic growth of the mean number of crossings up to time t starting from an initial
time t0 > 0.

As t increases, however, the time-dependence of these quantities becomes more intricate. The
long-time or asymptotic behavior, in particular, is strongly dependent on that of γ(t). In order
to exhibit systematically how significant changes in threshold-crossing statistics can be induced by
suitable time variations of the control parameter γ(t), we model the latter by a representative family
of functions, given by

γ(t) = γ0

(

τ
t + τ

)α
. (4.1)
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Here γ0 represents a scale for the strength of the friction coefficient, τ provides a time scale, while
the real exponent α serves to characterize both decreasing and increasing functions γ(t), depending
on whether α > 0 or α < 0. We shall follow a progression of values of α (and the other param-
eters, γ0 and τ) representing, in the long-time limit, a range from small friction to large friction.
This will serve to bring out clearly the gradual cross-overs in the leading asymptotic behavior of
the variance and the mean crossing rate. The set of functions in Eq. (4.1) essentially comprises
only power laws in t, but this suffices to make our point: even small changes in the exponent α can
have a significant effect on the asymptotic behavior of the system. It turns out that the value α = 1
separates qualitatively different kinds of asymptotic behavior, because the latter depends crucially
on whether the function φ(t) defined in Eq. (2.10) vanishes or tends to a nonzero limit as t → ∞.
Exactly at the borderline value α = 1, the behavior further depends on the value of γ0τ . We omit
the details and present only the results for the dominant large-t dependence of σ 2

x (t) and r(x0 , t).

(i) α > 1: In this case φ(∞) = exp [−γ0τ/(α−1)] is a positive number (< 1), so that ψ(t)→ t φ(∞)

for large t. The decay of the friction coefficient is rapid enough to ensure that the asymptotic long-
time behavior of σ 2

x (t) and r(x0 , t) is again similar to that in the complete absence of friction. We
find

σ 2
x (t) → 1

3q2 φ 2(∞) t3 , r(x0 , t) →
√

3
2πt . (4.2)

At intermediate times, of course, r(x0 , t) deviates from the exact result
√

3/(2πt) of the zero-
friction case: the first correction at short times is

√
3γ0/(8π), which happens to be independent of

the value of α .
When α = 1, φ(t) decays to zero according to a power law. This leads to a sequence of sub-

cases, as follows.

(ii) α = 1, γ0τ < 1
2 : The leading behavior of σ 2

x is given by

σ 2
x (t) → q2 τ2γ0τ t3−2γ0τ

(1− γ0τ)2 (3−2γ0τ)
. (4.3)

The behavior of the variance is still super-ballistic, with an exponent lying between 2 and 3. The
threshold-crossing rate has a leading behavior

r(x0 , t) → 1
2πt

(

3−2γ0τ
1−2γ0τ

)1/2
, (4.4)

showing how the coefficient of (2πt)−1 starts building up as the friction begins to enter the picture.

(iii) α = 1, γ0τ = 1
2 : The foregoing coefficient now diverges. Equation (4.3) shows that σ 2

x (t) ∼ t2

in this case, corresponding to ballistic motion. We also find

r(x0 , t) → 1√
2πt

ln1/2
( t

τ

)

, (4.5)

signaling the start of a deviation from the t−1 power law, by a
√

(ln t) modulating factor.
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(iv) α = 1, 1
2 < γ0τ < 1: It follows from Eq. (4.3) that the variance diverges like a power of t lying

between 1 and 2, so that the motion is super-diffusive; while

r(x0 , t) → (1− γ0τ)

πτ

(

3−2γ0τ
2γ0τ −1

)1/2
(τ

t

)−γ0τ+3/2
. (4.6)

Thus the fall-off of the mean threshold-crossing rate has switched to a power law with an exponent
that lies in between −1 and − 1

2 . This behavior continues till we reach γ0τ = 1.

(v) α = 1, γ0τ = 1: In this case we have an asymptotic behavior of the variance that is marginally
super-diffusive in the sense of a logarithmic modulating factor,

σ 2
x (t) → q2 τ2 t ln2

( t
τ

)

. (4.7)

Correspondingly,

r(x0 , t) → 1
π ln (γ0t)

( γ0
t

)1/2
, (4.8)

The exponent has become − 1
2 , but with a (ln t)−1 modulation of the power law.

(vi) α = 1, γ0τ > 1: We find

σ 2
x (t) → q2 τ2 t

(γ0τ −1)2 , (4.9)

while
r(x0 , t) → (γ0τ −1)

π[(2γ0τ −1)τ t]1/2 . (4.10)

The variance has thus attained its standard asymptotic diffusive behavior, while the cross-over of
r(x0 , t) to a t−1/2 decay is complete.

(vii) α < 1: The function φ(t) now approaches zero as t → ∞ at least as rapidly as a stretched
exponential. Therefore ψ(∞) and A(∞) are finite quantities, enabling us to derive the general
asymptotic formulas

σ 2
x (t) → q2

(

∫ ∞

0
dt ′ φ(t ′)

)2
t (4.11)

and

r(x0 , t) →
(
∫ ∞

0 dt ′ φ 2(t ′)
)1/2

π
(
∫ ∞

0 dt ′ φ(t ′)
) t−1/2 . (4.12)

This remains valid for all α < 1, including negative values of this exponent. At α = 0, we recover
the results

σ 2
x (t) → q2 t

γ2
0

, r(x0 , t) →
( γ0

2π2

)1/2
t−1/2 (4.13)

corresponding to the case of a constant friction coefficient γ0.
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(viii) α = −1: This case is of special interest: the friction coefficient increases linearly with time
as on a ramp, according to γ(t) = γ0 + ε t where ε ≡ γ0/τ . Then

σ 2
x (t) → πq2

2ε
eγ2

0 /ε [1− erf(γ0/
√

2ε)
]2 t (4.14)

and
r(x0 , t) → ε1/4 [1− erf(γ0/

√
ε) ]1/2

π5/4[1− erf(γ0/
√

2ε) ]
t−1/2 . (4.15)

As already mentioned, this asymptotic behavior implies that, for any t0 > 0, the mean number of
crossings 〈N(x0 ; t0, t)〉 increases like t1/2 as t → ∞.

All the results reported above have also been verified by extensive numerical simulation.
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