PROCEEDINGS

oF SCIENCE

Computational challenges in the large-scale
simulations of fracture in disordered media

Phani Kumar V.V. Nukala*
Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge,

Tennessee 37831, USA
E-mail: nukalapk@ornl.gov

Srdan Simunovié
Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge,

Tennessee 37831, USA
E-mail: simunovics@ornl.gov

Computational modeling of fracture in disordered materials using discrete lattice models is often
limited to small system sizes due to high computational cost associated with re-solving the gov-
erning system of equations every time a new lattice bond is broken. Previously, we proposed an
efficient algorithm based on multiple-rank sparse Cholesky downdating scheme for 2D simula-
tions, and an iterative scheme using block-circulant preconditioners for 3D simulations. Based on
these algorithms, we were able to simulate large 2D lattice systems (e.g., L = 1024). However,
despite these algorithmic advances, the largest 3D lattice system that we were able to solve was
limited to a size of L = 64. In this paper, we present three alternate approaches, namely, the ef-
ficient preconditioners, krylov subspace recycling, and massive parallelization of the algorithms,
the combination of which promise to significantly reduce the computational cost associated with
simulating large 3D lattice systems of sizes L = 200. The main idea associated with krylov sub-
space recycling is to retain a subspace determined while solving the current system and reuse it to
reduce the cost of solving the subsequent system obtained after removing the new broken bond.
Preliminary numerical simulation of fracture using 3D random fuse networks of sizes L = 64

substantiates the efficiency of the present algorithms.

International conference on Statistical Mechanics of Plasticity and Related Instabilities
August 29-September 2, 2005
Indian Institute of Science, Bangalore, India

*Speaker.

"The submitted manuscript has been authored by a contractor of the U.S. Government under Contract No. DE-
AC05-000R22725. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or repro-
duce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

(© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

Computational challenges in the large-scale simulations of fracture in disordered media
Phani Kumar V.V. Nukala

1. INTRODUCTION

The statistical properties of fracture in disordered media are interesting not only in view of
practical applications such as scaling and size effects on the fracture strength, but also for purely
theoretical reasons(1). Despite considerable progress, there exist many controversial issues be-
tween the theoretically estimated results and the experimentally measured values, and also among
various theoretical and numerical models used for studying fracture of disordered media. Among
these partly still controversial issues, is the scaling of crack geometries; in particular, the origin of
both the scaling and the universality of the fracture surface roughness exponent is at the heart of
the controversy.

Experiments have shown that in several materials under different loading conditions the frac-
ture surface is self-affine (2) and the out of plane roughness exponent displays a universal value of
~ 0.8 irrespective of the material studied (3). In particular, experiments have been done in metals
(4), glass (5), rocks (6) and ceramics (7), covering both ductile and brittle materials. However, the
current understanding that has emerged is that crack roughness displays a universal value of ~ 0.8
only at larger scales and at higher crack speeds, whereas another roughness exponent in the range
of 0.4 — 0.6 is observed at smaller length scales under quasi-static or slow crack propagation (3).

The situation that exists today is that there is a large discrepancy between theoretical esti-
mates and experimentally measured values of roughness exponents. This is true in both the cases
of three-dimensional fracture surface roughness and the interfacial crack front roughness measure-
ments. In both these cases, the numerical simulations have been limited to very small system sizes
because of high computational cost involved in performing the numerical simulations. It is be-
lieved that roughness measurements based on numerical results obtained using large system sizes
is necessary to bridge the gap that exists between numerically estimated roughness exponents and
the experimentally measured roughness exponents. Understanding the scaling properties of frac-
ture in disordered media including that of universality of crack surface roughness exponents at
small and large length scales represents an intriguing theoretical problem with many technological
implications.

Progressive damage evolution leading to failure of disordered quasi-brittle materials has been
studied extensively using various types of discrete lattice models (1; 8; 9; 10; 11; 12). In these
discrete lattice models, damage is accumulated progressively by breaking one bond at a time until
the lattice system falls apart. Each time a bond is broken, it is necessary to redistribute the stresses
to determine the subsequent bond failure. Large scale numerical simulation of these discrete lattice
networks has often been hampered for two reasons.

e First, a new large set of equations has to be solved everytime a new lattice bond is broken.
This becomes especially severe with increasing lattice system size, L, since the number of
broken bonds at failure, ny, increases with system size L as ny ~ O(L'®) in 2D and ny ~
O(L*7) in 3D.

e Second, critical slowing down associated with the iterative solvers close to the macroscopic
fracture. That is, as the lattice system gets closer to macroscopic fracture, the condition num-
ber of the system of linear equations increases, thereby increasing the number of iterations
required to attain a fixed accuracy. This becomes particularly significant for large lattices.

Computational challenges in the large-scale simulations of fracture in disordered media
Phani Kumar V.V. Nukala

In addition, since the response of the lattice system corresponds to a specific realization of the
random breaking thresholds, an ensemble averaging of numerical results over N, f;; configurations
is necessary to obtain a realistic representation of the lattice system response. This further increases
the computational time required to perform simulations on large lattice systems.

2. State-of-the-art Algorithms

Algebraically, the process of simulating fracture using discrete lattice systems is equivalent to
solving a new set of linear equations

AX,=b,, n=012,..., Q2.1

every time a new lattice bond is broken. An important feature of fracture simulations using the
discrete lattice systems is that, for each n = 0,1,2,..., the new matrix A, of the lattice system
after the (n+ 1)/ broken bond is equivalent to a rank-p downdate of the matrix A,, (13). The matrix
A,, refers to the lattice conductance matrix in the case of fuse models and the lattice stiffness matrix
in the case of spring and beam models, b,, refers to the applied nodal current or force vector, and
X, nodal potential or displacement vector.

2.1 Fourier Acceleration Method

Traditionally, iterative techniques based on preconditioned conjugate gradient (PCG) method
have been used to simulate fracture using fuse networks (see Ref. (14) for a excellent review of
iterative methods; see Ref. (15) for a review of multigrid method). However, large-scale numer-
ical simulations using iterative solvers have often been hindered due to the critical slowing down
associated with the iterative solvers as the lattice system approaches macroscopic fracture. As a
remedy, Fourier accelerated PCG iterative solvers (16; 17; 18) have been suggested to alleviate the
critical slowing down. The Fourier acceleration algorithm proposed in Refs. (16; 17) for solving
the system of equations Ax = b can be expressed as shown in Algorithm 1. In this subsection, we
do not explicitly write the subscript n to refer to the system of equations A,x, = b,, obtained after
the failure of n bonds. Instead, the subscript » is implicitly is understood.

Algorithm 1 Algorithm 1 Fourier Acceleration Method (16; 17)
0)

1: Compute r® =b— Ax© for some initial guess x(
2: fork=1,2,...do

3 Solve: Mz~ = p(k=1)

4. x(®0) = x(k=1) 4 g(k=1)

5. plk) = plk=1) _ A5z(k=1)

6: Check convergence; continue if necessary

7: end for

In Algorithm 1, the matrix M is referred to as the preconditioner, and the superscript in the
paranthesis refers to the iteration number. The steps in the Algorithm 1 can be combined into an
iterative scheme as shown below

KD — 0 4 10 2.2)

Computational challenges in the large-scale simulations of fracture in disordered media
Phani Kumar V.V. Nukala

where r®) = b — Ax(®). Denoting the error e (or algebraic error) as e = x — X, where X is the exact
solution such that AX = b, the errors in the (k)" and (k+ 1) iterations may be related as

e — 1M 'A)e (2.3)

Consequently, after (k) number of relaxation sweeps, the error in the k' approximation is given
by e®) = P¥e(?), where P = (I—M~'A). Choosing a particular vector norm and its associated
matrix norm, it is possible to bound the error after (k) iterations by [e® | < ||P||¥||e®||. From
this relation, it can be shown that the iteration associated with the matrix P converges for all initial
guesses if and only if p(P) < 1, where p(P) is the spectral radius defined as

p(P) = max;|4;(P)| (2.4)

and 2;(P) denotes any of the eigenvalues of P given by A;(P) = 1—A;(M~'A). Hence, conver-
gence of Algorithm 1 is fast whenever the eigenvalues of M~!A are clustered around one, i.e.,
when M~ is an approximation of the inverse of A. For computational purposes, M is chosen such
that its inverse can be computed cheaply so that the solution of Mz = r can be computed with least
computational effort.

The Fourier acceleration algorithm proposed in Refs. (16; 17) chooses an ensemble averaged
matrix A (19; 20) as the preconditioner in Algorithm 1, where A(i, j) = r'®~%), r = |i — j|, and
dy and d,, refer to the fractal dimension of the current-carrying backbone and the random-walk
dimension respectively. This ensemble averaged matrix A is a symmetric Toeplitz matrix and hence
the preconditioned system Mz = r in Algorithm 1 can be solved in O(NlogN) operations by using
FFTs of size N. Compared with the unconditioned CG methods, the Fourier accelerated technique
based on ensemble averaged circulant preconditioner significantly reduced the computational time
required to simulate fracture using random fuse networks. However, the ensemble averaged matrix
A is not the optimal circulant preconditioner since it does not minimize the norm ||[I—C~!A||r over
all non-singular circulant matrices C. Consequently, the Fourier accelerated scheme proposed in
Refs. (16; 17) is expected to take more CG iterations than the optimal (21; 22; 23) and superoptimal
(24; 25) circulant preconditioners.

2.2 Naive Application of Sparse Direct Solvers

Alternatively, since each of the matrices A, for n =0,1,2,..., is sparse, it is possible to use
any of the existing sparse direct solvers (26; 27; 28) to solve each of the system of equations formed
by A,. It should be noted that the Cholesky factorization of A, for any particular n can be done
efficiently. However, factorization of each of the A, matrices for ny ~ O(L'®) (or ny ~ O(L*7)
in 3D) number of times is still a computationally daunting task. For example, in the case of a
2D triangular lattice system of size L = 128, the algorithm based on factorizing each of the A,
matrices using supernodal sparse direct solver (29) took on an average 8300 seconds compared to
an average of 7473 seconds taken by the optimal circulant precondioner based CG algorithm. It
should however be noted that, in general, the optimal circulant precondioner based CG algorithm
used in the above comparison is much faster than the Fourier accelerated CG algorithm described
in Ref. (17). However, as the following description elaborates, the computational advantages of
sparse direct solvers are not fully realized when the algorithm is based on factorizing each of the
A,, matrices.

Computational challenges in the large-scale simulations of fracture in disordered media
Phani Kumar V.V. Nukala

2.3 Multiple-rank sparse Cholesky downdating algorithm

An important feature of fracture simulations using discrete lattice models is that, for each
n=0,1,2,..., the new matrix A, | of the lattice system after the (n+ 1)’ broken bond is equivalent
to a rank-p downdate of the matrix A, (13; 30). Mathematically, in the case of the fuse and spring
models, the breaking of a bond is equivalent to a rank-one downdate of the matrix A,, whereas
in the case of beam models, it is equivalent to multiple-rank (rank-3 for 2D, and rank-6 for 3D)
downdate of the matrix A,. Thus, an updating scheme of some kind is therefore likely to be more
efficient than solving the new set of equations formed by Eq. (2.1) for each n.

Consider the Cholesky factorizations

PA, P =L,L 2.5)

foreachn=0,1,2,---, where P is a permutation matrix chosen to preserve the sparsity of L,,. Since
the breaking of bonds is equivalent to removing the edges in the underlying graph structure of the
matrix A,, for each n, the sparsity pattern of the Cholesky factorization L, of the matrix A,
must be a subset of the sparsity pattern of the Cholesky factorization L,, of the matrix A,,. Hence,
for all n, the sparsity pattern of L,, is contained in that of Ly. That is, denoting the sparsity pattern
of L by .Z, we have

Ln 2L Ym<n (2.6)

For two-dimensional lattice simulations, in Ref. (13), we proposed an efficient algorithm
based on multiple-rank sparse Cholesky downdating scheme of Davis and Hager (31; 32) to suc-
cessively downdate the Cholesky factorizations L, of A, to L, of Ay, ie., L, — L, for
n=0,1,2,---. Since .Z;, O Z,+1, it is necessary to modify only a part of the non-zero entries
of L, in order to obtain L, — L, . This results in a significant reduction in the computational
time. Once the factorization L, | of A, is obtained, the solution vector X, is obtained from
L+ 1L’n 1Xn+1 = by by two triangular solves (13). Using this algorithm (13), the authors have
reported numerical simulation results for large 2D lattice systems (e.g., L = 1024), which to the
authors knowledge, was so far the largest lattice system used in studying damage evolution using
discrete lattice systems. Although the sparse direct solver algorithm presented in (13) is superior to
iterative solvers in two-dimensional lattice systems, for 3D lattice systems, the memory demands
brought about by the amount of fill-in during sparse Cholesky factorization favor iterative solvers.

2.4 Optimal and superoptimal circulant preconditioners

The performance of iterative solvers depends crucially on the condition number and clustering
of the eigenvalues of the preconditioned system. In general, the more clustered the eigenvalues
are, the faster the convergence rate is. The main observation behind developing preconditioners
for the iterative schemes is that the operators on discrete lattice network result in a circulant block
structure. Hence, a fast Poisson type solver with a circulant preconditioner can be used to obtain
the solution in O(N logN) operations using FFTs of size N, where N denotes the number of degress
of freedom. However, as the lattice bonds are broken successively, the initial uniform lattice grid
becomes a diluted network. Consequently, although the matrix Ay is Toeplitz (also block Toeplitz
with Toeplitz blocks) initially, the subsequent matrices A,, for each n, are not Toeplitz matrices.

Computational challenges in the large-scale simulations of fracture in disordered media
Phani Kumar V.V. Nukala

However, depending on the pattern of broken bonds, A, may still possess block structure with
many of the blocks being Toeplitz blocks.

The optimal circulant preconditioner c(A) (21; 22; 23; 25) of a matrix A is defined as the
minimizer of ||[C— A||r overall N x N circulant matrices C. Given a matrix A, the optimal circulant
preconditioner ¢(A) is uniquely determined by

¢(A) = F*5 (FAF*)F 2.7)

where F denotes the discrete Fourier matrix, 6 (A) denotes the diagonal matrix whose diagonal
is equal to the diagonal of the matrix A, and * denotes the adjoint (i.e. conjugate transpose). It
should be noted that the diagonals of FAF* represent the eigenvalues of the matrix ¢(A) and can be
obtained in O(N log N) operations by taking the FFT of the first column of ¢(A). The first column
vector of T. Chan’s optimal circulant preconditioner matrix that minimizes the norm ||C — A || is
given by

1 N
= N}Z} aj(j-i+1) mod N 2.8)

If the matrix A is Hermitian, the eigenvalues of ¢(A) are bounded below and above by
Aonin (A) < Monin (C<A)) < }‘-max(C<A)) <)\fmax<A) (2.9)

where Ay, (-) and Aygy(-) denote the minimum and maximum eigenvalues, respectively. Based
on the above result, if A is positive definite, then the circulant preconditioner c(A) is also positive
definite. The computational cost associated with the solution of the preconditioned system ¢(A)z =
r is the initialization cost of nnz(A) for setting the first column of ¢(A) using Eq. (2.8) during the
first iteration, and O(N log N) during every iteration step.

The superoptimal circulant preconditioner #(A) (24) is based on the idea of minimizing the
norm ||I— C~'A||r over all nonsingular circulant matrices C. In the above description, #(A) is
superoptimal in the sense that it minimizes ||[I — C~'A||, and is equal to

1(A) = c(AA")c(A) ! (2.10)

The preconditioner obtained by Eq. (2.10) is also positive definite if A itself is positive definite.
Although the preconditioner #(A) is obtained by minimizing the norm ||I—C~!'A||r, the asymptotic
convergence of the preconditioned system is same as c(A) for large N system.

2.5 Block-circulant preconditioner

Alternatively, block-circulant preconditioners may also be used as preconditioners since many
of the block matrices in A, for n > 0 may still retain the circulant or Toeplitz property. Let the
matrix A, be partitioned into r-by-r blocks such that each block is an s-by-s matrix. Thatis, N =rs.
Since each of the blocks of A, are Toeplitz (or even circulant), the block-circulant preconditioner
is obtained by using circulant approximations for each of the blocks of A,. It is the minimizer
of |C — A,||F over all matrices C that are r-by-r block matrices with s-by-s circulant blocks. In
addition, we have

)\'min (An) < }‘-min (CB (An)) < }‘-max(CB (An)) <)\fmax<An) (21 1)

Computational challenges in the large-scale simulations of fracture in disordered media
Phani Kumar V.V. Nukala

In particular, if A, is positive definite, then the block-preconditioner cg(A,) is also positive definite.
In general, the average computational cost of using the block-circulant preconditioner per iteration
is O(rs log s) + delops, where delops represents the operational cost associated with solving a
block-diagonal matrix with r x r dense blocks. For 2D and 3D discrete lattice network with periodic
boundary conditions in the horizontal disrection, this operational cost reduces significantly.

For 3D lattice systems, the block-circulant preconditioner has been shown to exhibit superior
performance over the sparse direct solvers and the related incomplete Cholesky preconditioned CG
solvers (33). In addition, for both 2D and 3D lattice systems, the block circulant preconditioned
CG is superior to the optimal circulant preconditioned PCG solver, which in turn is superior to the
Fourier accelerated PCG solvers used in Refs. (16; 17).

Using this block circulant preconditioner (33), we were able to simulate fracture in lattice
systems of sizes up to 64 x 64 x 64, which is the largest ever discrete lattice system used for
fracture simulation of broadly disordered materials. Table 1 presents a summary of computational
times required for simulating the fracture of one sample configuration of a 3D cubic lattice system.
These simulations have been performed on a IBM 1.3 GHz Power4 processor. The simulation
begins with an intact lattice system and is carried out by breaking one bond at a time until the
macroscopic fracture occurs. The computational times presented in Table 1 represent the CPU
times required to simulate one such sample configuration, and the number of iterations represent
the cumulative number of CG iterations required to fracture one such typical sample configuration.
It should be noted that the simulation of a L = 48 cubic lattice system took approximately 1.5
days (130522 seconds) of computational time. In comparison, a typical fracture simulation of
a 64 x 64 x 64 lattice system approximately took 14 days of CPU time using the optimal block
circulant preconditioner as it was necessary to solve a system of equations with N ~ 643 variables
for about ny = 126577 number of times. Using the block-circulant preconditioner, the CPU times
necessary for simulating a cubic lattice system of size (L x L x L) appear to scale as ¢'(L?), which
poses severe computational requirements for simulating fracture using large lattice system sizes.
This is precisely the problem where massively parallel simulation using CG algorithm with block-
circulant preconditioner may be explored.

Table 1: Block Circulant PCG (3D Cubic Lattice)

Size | CPU(sec) | Iterations
10 16.54 16168
16 304.6 58756
24 2154 180204
32 12716 403459
48 130522 1253331
64 1180230

3. Future Directions and Computational Challenges

As mentioned earlier, the performance data presented in the previous section represents the
performance of algorithms on a single processor. Alternatively, it is possible to employ paral-

Computational challenges in the large-scale simulations of fracture in disordered media
Phani Kumar V.V. Nukala

lel sparse or iterative solvers to perform numerical simulation of fracture. Since iterative solvers
exhibit excellent scalability with respect to number of processors, parallel iterative solvers are es-
pecially suitable for performing large scale fracture simulations using three-dimensional lattice
networks. Even then, large scale 3D simulations of the order L = 200 may still be beyond the
current computational capability. For example, assuming a perfectly linear scaleup, a system of
size L = 128 would require 4.5 days of computational time on 512 IBM 1.3 GHz Power4 proces-
sors or its equivalents, whereas a system of size L = 200 requires 20 days of CPU time on 2048
IBM 1.3 GHz Power4 processors. These numbers suggest that large scale 3D simulations using
brute force parallel solvers alone may not be practical at present, if not impossible. Moreover, the
communication overhead between processors may not result in a linear scaleup of the problem size
with the number of processors. In addition to the above computational requirements, the computa-
tional complexity of analyzing many sample configurations to obtain a realistic ensemble averaged
response becomes even more significant for large system sizes. In this sense, along with massive
parallelization, it may be worthwhile to look into alternative algorithmic strategies/preconditioners
for solving the system of equations that arise in the simulation of large 3D lattice systems.

In the following, we propose three alternate ways in which efficient simulation of large-scale
3D lattice systems can be achieved:

e Efficient preconditioners for solving each A,x, = b, using either algebraic multigrid (AMG)
methods or Kronecker products.

e Recycling of Krylov subspaces to obtain the solution of each of the subsequent systems
A, 11X,11 = b, with minimal effort.

e Massive parallelization of the preconditioned iterative scheme.

3.1 Krylov subspace recycling

The main idea is to develop an algorithm based on recycling of the Krylov subspace deter-
mined while solving A, x, = b, and use it to reduce the cost of solving the A, 1X,+1 = b1 (34).
Such a recycling process amounts to a reduction of iteration count required to solve the new linear
system A, ;1X,+1 = b,11, and hence increases the overall efficiency of the algorithm. In the case
of random fuse and spring models, the successive A, matrices differ by a rank-1 matrix with a
very sparse structure, and this enables us to develop efficient subspace recycling algorithms. In our
preliminary analysis using a 3D cubic lattice system of size L = 64, the krylov subspace recycling
algorithm reduced the computational time by as much as 30%. This percentage is expected to be
higher for larger lattice system sizes. Currently, we are investigating various approaches that take
advantage of the rank-1 structure of the matrix downdates.

3.2 Massively parallel algorithms

As mentioned earlier, a trivial way to achieve speedup is through massive parallelization of
the current state-of-the-art algorithms presented in Section 2 on supercomputers with thousands of
processors. However, quite often, this modification alone, i.e., simply parallelizing the algorithms
such as those presented in Section 2, will not result in a capability that can simulate as large
three-dimensional systems as L = 200. The main reason for this inefficiency is the inter-processor

Computational challenges in the large-scale simulations of fracture in disordered media
Phani Kumar V.V. Nukala

communication overhead, which starts to dominate the computational CPU time. Although an
iterative or a direct sparse solution of any of the A,x, = b,, systems can be performed efficiently,
the main computational bottleneck arises due to the fact that one needs to solve such systems ny ~
¢(L*7) (in 3D) number of times. Whenever communication overhead dominates the computational
CPU time, the algorithm fails to scaleup, i.e., for a given computational time, it is not possible to
increase the problem size simply by increasing the number of processors. Alternatively, for a given
problem size, it is not possible to decrease the computational time simply by increasing the number
of processors.

As an example, we considered the 3D cubic fuse model of size L = 64, which took approxi-
mately 14 days of computational time on a single processor. The number of equations in the linear
system A,x, = b, are of the order of N ~ 643, and for a typical sample configuration such linear
systems were solved approximately ny = 126577 number of times. Using the block-circulant pre-
conditioner, the algorithm scaled-up until 16 processors, beyond which the communication over-
head dominated the computational expense. Although the parallelization significantly reduced the
computational time, from 14 days on a single processor to about a day on sixteen processors, further
increase in efficiency was not achieved simply by increasing the number of processors. It should
however be noted that much larger lattice systems will scaleup to many more processors before
the communication overhead once again dominates the computational complexity. Currently, we
are considering possible approaches of combining efficient preconditioners and Krylov subspace
recycling techniques with massive parallelization to develop an algorithm suitable for simulating
large 3D systems of the order of L = 200.

4. CONCLUSIONS

In this paper, we present three alternate approaches to increase the efficiency of algorithms
used in large scale 3D simulation of fracture using discrete lattice networks such as fuse, spring and
beam networks. These approaches, namely, efficient preconditioners, krylov subspace recycling,
and massive parallelization of the algorithms significantly reduce the computational time required
for simulating large 3D lattice systems. Our preliminary studies on a 3D cubic lattice system of size
L = 64 indicate that krylov subspace recycling can reduce the computational time by as much as
30%, and a straight forward massive parallelization of our iterative schemes using block-circulant
preconditioners can reduce the computational time from 14 days to a day. However, even with
these novel approaches, analysis of a 3D lattice system of size L = 200 appears to be impractical,
if not impossible. Currently, we are exploring the alternatives of combining massive parallelization
with krylov subspace recycling techniques and efficient preconditioners, the combination of which
promises to significantly reduce the computational cost associated with simulating large 3D lattice
systems of the order of L = 200.

Acknowledgment
PKVVN is sponsored by the Mathematical, Information and Computational Sciences Division,
Office of Advanced Scientific Computing Research, U.S. Department of Energy under contract
number DE-AC05-000R22725 with UT-Battelle, LLC.

Computational challenges in the large-scale simulations of fracture in disordered media
Phani Kumar V.V. Nukala

References

[1] H. J. Herrmann and S. Roux (eds.), Statistical Models for the Fracture of Disordered Me-
dia, (North-Holland, Amsterdam, 1990). B. K. Chakrabarti and L. G. Benguigui, Statistical
physics of fracture and breakdown in disordered systems (Oxford Univ. Press, Oxford, 1997).

[2] B. B. Mandelbrot, D. E. Passoja, and A. J. Paullay, Nature (London) 308, 721 (1984).
[3] For a review see E. Bouchaud, J Phys. C 9, 4319 (1997)

[4] K.J. Maloy, A. Hansen, E.L. Hinrichsen, and S. Roux, Phys. Rev. Lett. 68, 213 (1992); E.
Bouchaud, G. Lapasset, J. Planés, and S. Navéos, Phys. Rev. B 48, 2917 (1993).

[5] P. Daguier, B. Nghiem, E. Bouchaud, and F. Creuzet, Phys. Rev. Lett. 78, 1062 (1997).

[6] J. Schmittbuhl, S. Roux, and Y. Berthaud, Europhys. Lett. 28, 585 (1994). J. Schmittbuhl, F.
Schmitt, and C. Scholz, J. Geophys. Res. 100, 5953 (1995).

[7] J.J. Mecholsky, D.E. Passoja, and K.S. Feinberg-Ringel, J. Am. Ceram. Soc. 72, 60 (1989).
[8] L. de Arcangelis, S. Redner, and H. J. Herrmann, J. Phys. (Paris) Lett. 46 585 (1985).
[9] M. Sahimi and J. D. Goddard, Phys. Rev. B, 33, 7848 (1986).

[10] P. M. Duxbury, P. D. Beale, and P. L. Leath, Phys. Rev. Lett. 57, 1052 (1986).

[11] P. M. Duxbury, P. L. Leath, and P. D. Beale, Phys. Rev. B 36, 367 (1987).

[12] A.Hansen and S. Roux, Statistical toolbox for damage and fracture, 17-101, in book Damage
and Fracture of Disordered Materials, eds. D. Krajcinovic and van Mier, Springer Verlag,
New York, 2000.

[13] P.K. V. V. Nukala, and S. Simunovic, J. Phys. A: Math. Gen. 36, 11403 (2003).

[14] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C.
Romine and H. Van der Vorst, Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods, 2nd Edition, SIAM, Philadelphia, 1994.

[15] W. L. Briggs, Van Emden Henson and S. F. McCormick, A Multigrid Tutorial, 2nd Edition,
SIAM, Philadelphia, 2000.

[16] G. G. Batrouni, A. Hansen, and M. Nelkin, Phys. Rev. Lett. 57, 1336 (1986).
[17] G. G. Batrouni, A. Hansen and M. Nelkin, J. Stat. Phys. 52, 747 (1988).

[18] G. G. Batrouni and A. Hansen, Phys. Rev. Lett. 80, 325 (1998).

[19] O’Shaughnessy and I. Procaccia, Phys. Rev. Lett. 54, 455 (1985).

[20] O’Shaughnessy and L. Procaccia, Phys. Rev. A 32, 3073 (1985).

10

Computational challenges in the large-scale simulations of fracture in disordered media
Phani Kumar V.V. Nukala

[21] T. Chan, SIAM J. Sci. Stat. Comput. 9, 766 (1988).

[22] R. H. Chan, STAM J. Matrix Anal. Appl. 10, 542 (1989).

[23] R. Chan and T. Chan, Numerical Linear Algebra Applications, 1, 77 (1992).
[24] E. Tyrtyshnikov, SIAM J. Matrix Anal. Appl. 13, 459 (1992).

[25] R. H. Chan and M. K. Ng, SIAM Review 38(3), 427-482 (1996).

[26] A. Gupta, M. Joshi, and V. Kumar, Technical Report RC 22038 (98932), IBM T. J. Watson
Research Center, Yorktown Heights, NY (2001)

[27] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu, STAM J. Matrix Anal.
Appl. 20, 720 (1999).

[28] P.R. Amestoy, . S. Duff, J.-Y. L’Excellent, and J. Koster SIAM J. Matrix Anal. Appl. 23(1),
15 (2001).

[29] S. Toledo, D. Chen, and V. Rotkin TAUCS: A library of sparse linear solvers,
http://www.tau.ac.il/ stoledo/taucs/ (2001).

[30] P. K. V. V. Nukala, S. Simunovic, and M. N. Guddati, Int. J. Numer. Meth. Engng. 62, 1982
(2005).

[31] T. A. Davis and W. W. Hager, SIAM J. Matrix Anal. Appl. 20(3), 606-627 (1999).
[32] T. A. Davis and W. W. Hager, SIAM J. Matrix Anal. Appl. 22(4), 997-1013 (2001).
[33] P. K. V. V. Nukala, and S. Simunovic, J. Phys. A: Math. Gen. 37, 2093 (2004).

[34] M. L. Parks, E. de Sturler, G. Mackey, D. D. Johnson, and S. Maiti, SIAM Journal on Scien-
tific Computing (in press, 2006).

11

