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Describing spatio-temporal features of the Portevin-Le Chatelier effect is known to be a difficult

task as they emerge due to collective behavior of dislocations. In this article, we describe a dy-

namical approach to understand three aspects of the phenomenon, namely, the bistable nature of

stress envelope, the negative strain rate sensitivity and visualization of dislocation configurations

in different regimes of strain rate. We shall use some special dynamical techniques such as the

reductive perturbative technique and slow manifold approach to understand these features. Using

a reductive perturbative technique, we derive Stuart-Landau equation for the complex order pa-

rameter representing the amplitude and the phase of the limit cycle solution in the neighbourhood

of the Hopf bifurcation. The slow manifold technique is used to map different parts of the slow

manifold with the different branches of the negative SRS. More importantly, the method allows

us to visualize the dislocation configurations in the regions of the bands.
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1. INTRODUCTION

Describing spatio-temporal features of the Portevin-Le Chatelier (PLC) effect is a particularly
difficult task for a variety of reasons. First, plastic deformation is a highly dissipative irreversible
nonequilibrium process. Second, these spatio-temporal structures emerge from the collective be-
havior of dislocations in real materials, describing pattern formation in such realistic conditions
is far more difficult than those nonequilibrium condensed matter situations which are relatively
simple where experimental results correspond to ideal conditions. (Of course, one is making a
continuous effort to obtain ideal experimental conditions.) Third, while describing properties of
individual dislocations and their interactions have been known for a long time, there is no accepted
framework to describe the collective properties of dislocations. Some of these difficulties has been
exposed in the efforts that have been pursued in the last three decades. One direction that the au-
thor has introduced and practiced for over two decades is to adopt nonlinear dynamical approach
to understand the collective behavior of dislocations. In this article, we will focus on a few aspects
of the PLC effect such as bistability, dynamical interpretation of negative strain rate sensitivity of
the flow stress and visualization of dislocation configurations using slow manifold approach.

The Portevin-Le Chatelier (PLC) effect [2] refers to a kind of spatio-temporal instability ob-
served when metallic alloys are deformed under constant strain rate confitions. The temporal in-
stability manifests itself in the form of serrations on the stress-strain curves [1, 3]. Each stress drop
is generally associated with the nucleation and often the propagation of a band of localized plastic
deformation. Three types of bands have been identified. With increasing strain rate or decreasing
the temperature, one first finds the type C band, identified with randomly nucleated static bands
with nearly regular large characteristic stress drops. Then the type B ‘hopping’ bands are seen
with serrations that are more irregular with amplitudes that are smaller than that for the type C.
The bands formed are still localized and static in nature, but forming ahead of the previous band
in a spatially correlated way giving the visual impression of a hopping propagation. Finally, one
observes the continuously propagating type A bands associated with small stress drops. These dif-
ferent types of PLC bands are believed to represent distinct correlated states of dislocations in the
bands.

Conventional explanation of the PLC effect is based on the concept of dynamic strain aging
(DSA) first introduced by Cottrell [4] and later extended by others [1, 5, 7, 6]. In the Cotrell’s
picture, DSA refers to the interaction of mobile dislocations with the diffusing solute atoms. At
low strain rates (or high temperatures) the average velocity of dislocations is low and there is suf-
ficient time for the solute atoms to diffuse to the dislocations and pin them (called as aging). Thus,
longer the dislocations are arrested, larger will be the stress required to unpin them. When these
dislocations are unpinned, they move abruptly till they are arrested again. At high strain rates (or
low temperatures), the time available for solute atoms to diffuse to the dislocations decreases and
hence the stress required to unpin them decreases. Thus, in a range of strain rates and temperatures
where these two time scales are of the same order of magnitude, the PLC instability manifests.
The competition between the slow rate of pinning and sudden unpinning of the dislocations, at the
macroscopic level translates into a negative strain rate sensitivity (SRS) of the flow stress as a func-
tion of strain rate which is the basic instability mechanism used in most phenomenological models
[1, 3]. It may be pointed out that slow-fast dynamics and the negative flow rate characteristic is
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common to many stick-slip systems such as frictional sliding [8], fault dynamics [9] and peeling of
an adhesive tape [10].

Among pattern forming systems the PLC effect is much harder to describe as it involves both
fast and slow collective modes of dislocations. This requires specific techniques of nonlinear dy-
namics. Further, these time scales themselves evolve as a function of strain rate and temperature
which in turn leads to different types of serrations. At low strain rates, the existence of both fast
time scale corresponding to stress drops and the slow time scale corresponding to the loading time
scale are clearly discernable. This also means the bistable nature of stress reflected in the upper
and the lower envelope of the stress values. However, at high strain rate, as internal (plastic) re-
laxation is not complete, a clear demarcation of time scales becomes difficult. This along with
the corresponding length scales (band widths), which also evolve, points to an extremely complex
underlying dynamics.

The inherent nonlinearity and the presence of multiple time scales demands the use of tools
and concepts of nonlinear dynamics for a proper understanding of this phenomenon. The first
dynamical approach was undertaken in early 80s by Ananthakrishna and coworkers [11], which
by its very nature affords a natural basis for the description of time dependent aspects of the PLC
effect. Further, it also allows for explicit inclusion and interplay of different time scales inherent
in the dynamics of dislocations [11]. Despite the simplicity of the model, many generic features of
the PLC effect such as the existence of a window of strain rates and temperatures within which it
occurs, etc., were correctly reproduced. More importantly, the negative SRS was shown to emerge
naturally in the model, as a result of nonlinear interaction of the participating defects [11, 12].

Due to the dynamical nature of the model, one prediction that is unique to this model is the
existence of the chaotic stress drops in a certain range of temperatures and strain rates [13]. This
triggered a series of experiments to verify this prediction. The method followed was to analyze the
stress-time series [14, 15] using dynamical methods [16, 17]. Apart from confirming the chaotic
nature of stress drops in a window of strain rates, these attempts have shown that a wealth of
dynamical information can be extracted from the stress-time series obtained during the PLC effect
[14, 15]. Indeed, the number of degrees of freedom estimated from the experimental time series
turn out to be same as in the model offering justification for ignoring spatial degrees of freedom in
the early investigations. Subsequent efforts to extend this analysis to the time series obtained over a
range of strain rates showed an intriguing crossover from a chaotic state at low and medium strain
rates to a power law state at high strain rates [18, 19]. As the crossover is observed in both single
and polycrystals, it appears to be insensitive to the microstructure. However, at a fundamental
level, chaotic state is dynamically distinct from the power law state. The former involves a small
number of degrees of freedom characterized by the self-similarity of the attractor and sensitivity
to initial conditions [17] while latter is an infinite dimensional state reminiscent of self-organized
criticality (SOC) [20, 21]. Due to this basic difference in the nature of the dynamics, most systems
exhibit either of these states. More importantly, these studies also demonstrate that the nature of
the dynamics in a given strain rate regime is correlated with the nature of band type. The chaotic
state has been identified with the type B bands and the scaling regime at high strain rate with the
propagating type A bands [19]. The similarity between the transition from the static type B to
the propagative type A bands with the Anderson’s transition in condensed matter physics has been
pointed out. Indeed, recently the spatio-temporal features of the PLC effect have attracted attention
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from physicists also [22]. Thus, it appears that the PLC effect is a storehouse of many paradigms
in condensed matter physics.

The extension of the model to include spatial degrees of freedom has demonstrated that the
above mentioned crossover detected in the analysis of experimental time series can be explained
fully [23]. Further, the model exhibits the three types of bands as well. More importantly, a specific
methodology used in understanding the crossover, namely the slow manifold approach helps to
visualize dislocation configurations in the different band regimes of strain rates.

In this paper, we shall review three different aspects of the PLC effect within the scope of the
Ananthakrishna’s model (AK model for short). First the derivation of Stuart - Landau equation
for the amplitude of serrations in the neighborhood of Hopf bifurcation to demonstrate the bistable
nature of the stress. The second, we provide a dynamical interpretation of the negative strain rate
sensitivity of the flow stress based on the structure of the slow manifold. Finally, using the same
approach we show that visualization of dislocation configurations in the type C, B and A band
regimes is possible.

Section II, briefly introduces the dynamical model and its extension to include spatial degrees
of freedom. Section III contains the numerical procedure used. In Section IV, we introduce the
background material used for the study. Section V introduces the reductive perturbative approach
and applies it to the model to obtain Ginzberg-Landau type of equation for the amplitude of the
serrations. Section VI deals with a dynamical interpretation of the negative strain rate sensitivity
(SRS) of the flow stress. Section V contains the slow manifold method of visual realization of
dislocation configurations. We conclude the paper with a few general comments.

2. THE ANANTHAKRSHANA’s MODEL

In the dynamical model due to Ananthakrishna and coworkers [11], the well separated time
scales mentioned in the DSA are mimicked by three types of dislocations, namely, the fast mobile,
immobile and the ‘decorated’ Cottrell type dislocations. The basic idea of the model is that all
the qualitative features of the PLC effect emerge from the nonlinear interaction of these few dislo-
cation populations, assumed to represent the collective degrees of freedom of the system. As the
model has been studied in detail [24, 25, 26], following the notation in Ref. [12], we shall briefly
outline the model in the scaled variables. The model consists of densities of mobile, immobile,
and Cottrell’s type dislocations denoted by ρm

�
x � t � , ρim

�
x � t � and ρc

�
x � t � respectively, in the scaled

form. The evolution equations are:

∂ρm

∂ t ��� b0ρ2
m � ρmρim � ρim � aρm � φ m

e f f ρm � D
ρim

∂ 2 � φ m
e f f

�
x � ρm �

∂x2 � (2.1)

∂ρim

∂ t � b0
�
b0ρ2

m � ρmρim � ρim � aρc ��� (2.2)

∂ρc

∂ t � c
�
ρm � ρc ��� (2.3)

The model includes the following dislocation mechanisms: immobilization of two mobile disloca-
tions due to the formation of locks (b0ρ2

m), the annihilation of a mobile dislocation with an immo-
bile one (ρmρim), the remobilization of the immobile dislocation due to stress or thermal activation
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(ρim). It also includes the immobilization of mobile dislocations due to solute atoms (aρm). Once
a mobile dislocation starts acquiring solute atoms we regard it as the Cottrell’s type dislocation ρc.
As they progressively acquire more solute atoms, they eventually stop, then they are considered
as immobile dislocations ρim. Alternately, the aggregation of solute atoms can be regarded as the
definition of ρc, ie., ρc �

� t� ∞ dt � ρm
�
t � � K � t � t � � , where K

�
t � is an appropriate kernel. For the sake

of simplicity, this kernel is modeled through a single time scale, K
�
t � � e

� ct . The convoluted na-
ture of the integral physically implies that the mobile dislocations to which solute atoms aggregate
earlier will be aged more than those which acquire solute atoms later (see ref. [12]). The fifth
term in Eqn.(1) represents the rate of multiplication of dislocations due to cross-slip. This depends
on the velocity of the mobile dislocations taken to be Vm

�
φ � � φ m

e f f , where φe f f �
�
φ � hρ1 � 2

im � is
the scaled effective stress, φ the scaled stress, m the velocity exponent and h a work hardening
parameter.

The nature of the spatial coupling in the PLC effect has been a matter of much debate [1].
Several mechanisms have been suggested as a source of spatial coupling [1]. Within the scope of
our model, cross-slip is a natural source of spatial coupling, as dislocations generated due to cross
slip at a point spread over to the neighboring elements. It is this that gives rise to the last term in
Eq. 2.1 [23]. Note the factor ρ � 1

im which models the fact that cross-slip spreads only into regions
of minimum back stress. Finally, a, b0 and c are the scaled rate constants referring, respectively, to
the concentration of solute atoms slowing down the mobile dislocations, the thermal and athermal
reactivation of immobile dislocations, and the rate at which the solute atoms are gathering around
the mobile dislocations. These equations are coupled to the machine equation

dφ
�
t �

dt � d � ε̇ �
1
l

� l

0
ρm
�
x � t � φ m

e f f
�
x � t � dx � � (2.4)

where ε̇ is the scaled applied strain rate, d the scaled effective modulus of the machine and the
sample, and l the dimensionless length of the sample. (We reserve ε̇a for the unscaled strain rate.)
We also note here that there is a feed back mechanism between the machine equation Eq. 2.4 and
Eq.2.1.

3. NUMERICAL SOLUTION OF THE MODEL

We first note that the spatial dependence of ρim and ρc arises only through that of ρm. We solve
the above set of equations by discretizing the specimen length into N equal parts. Then, ρm

�
j � t � ,

ρim
�
j � t � , ρc

�
j � t � , j � 1 � � � � � N, and φ

�
t � are solved. The widely differing time scales [12, 27, 28]

calls for appropriate care in the numerical solutions. The initial values of the dislocation densities
are so chosen that they mimic the values in real samples. As for the boundary conditions, we
note that the sample is strained at the grips. This means that there is a high density of immobile
dislocations at the ends of the sample. We simulate this by employing two orders of magnitude
higher values for ρim

�
j � t � at the end points j � 1, and N than the rest of the sample. Further, as

bands cannot propagate into the grips, we use ρm
�
j � t � � ρc

�
j � t � � 0 at j � 1 and N.

As in the original model without spatial degrees of freedom, the PLC state is reached through
a Hopf bifurcation and is terminated by a reverse Hopf bifurcation (with the other parameters
kept in the instability domain). The number of complex conjugate roots are 2N, the negative ones
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are N and one zero exponent. The boundary of ε̇ is approximately in the range 10 to 1000 for
a � 0 � 8 � b0 � 0 � 0005 � c � 0 � 08 � d � 0 � 00006 � m � 3 � 0, h � 0 with D � 0 � 5, beyond which a uniform
steady state exits.

4. Subspaces of slow and fast time scales

As stated earlier, a proper description of the PLC effect requires a description of both the
slow and fast time scales which in turn requires special techniques in nonlinear dynamics. These
two time scales are transparent in the model equations where Eq. (2.1) represents a fast dynamics
compared to the rest ( both Eq. (2.2) and (2.4) are slow while (2.3) falls in between). Such a system
can be studied by eliminating the fast variable thereby allowing a reduction in the dimensionality
of the system [29]. To illustrate this consider

µ ẋ � f
�
x � y � µ ��� (4.1)

ẏ � g
�
x � y � µ ��� (4.2)

where µ is small parameter and x ��� p and y ��� q . The main feature of such systems is that x
evolves much faster than y unless f

�
x � y � µ � is small. In the vicinity of the slow manifold defined

by f
�
x � y � µ � � 0, the dynamics is characterized by the evolution of the slow variable y. Thus, there

is a reduction in the dimensionality of the system. On the other hand, if one is interested in the fast
sub-system, using a scaled time τ � t � µ , we get the corresponding fast variable x defined by Eq.
4.1 where the slow variables y act as parameters (obtained from Eq. 4). This subspace is clearly
the complimentary subspace of the slow manifold. We shall use these the subspace spanned by the
slow modes for the visualization of dislocation configurations and the complimentary subspace of
fast variable to obtain the band velocity at high strain rates respectively [23].

5. REDUCTIVE PERTURBATIVE APPROACH

As mentioned in the introduction, in the regime of low strain rates (type C), two distinct levels
of stress are discernable that correspond to the top and bottom of serrations. We first attempt to
understand the origin of this bistability in this model as no input of negative SRS feature has been
incorporated. We shall shown that this arises due to Hopf bifurcation of the system of equations.
For the sake of simplicity, we consider the creep case where the scaled stress is held constant and
ignore the spatial inhomogeneous deformation.

We begin with a brief outline the reductive perturbative approach to problems of formation
of new states of order in far-from-equilibrium situations. Transitions occurring in these systems
are quite analogous to equilibrium phase transitions. The general idea is to construct a “potential-
like function" for the “order-parameter"-like variable in the neighborhood of the critical value of
the drive parameter. This would permit the use of the methods developed in equilibrium phase
transition for further analysis. Below the point of Hopf bifurcation of the system where the fixed
point is still stable, a pair of complex conjugate eigenvalues with real negative parts and another
real negative eigenvalue exist for the linearized system of equations around the steady state. As we
approach the critical bifurcation value from below, the real part of the pair of complex conjugate
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eigenvalues approaches zero from the negative side, and hence the corresponding eigendirections
have a slow time scale. As we increase the drive parameter further, the real parts of the complex
conjugate eigen values become positive and this region of the drive parameter is unstable. Thus,
while the two eigenvectors corresponding to the pair of complex conjugate eigenvalues are slow
modes, the eigenvector corresponding to the real negative eigenvalue is a fast (and decaying) mode.
For this reason, the slow modes determine the formation of new states of order. The reductive per-
turbative method is a method where the slow enslaving dynamics is extracted in a systematic way
[30, 31, 32, 33, 34, 35, 36]. The method involves first finding the critical eigenvectors correspond-
ing to the bifurcation point and expressing the general solution as a linear combination of these
vectors. The effect of the nonlinearity is handled progressively using the multiple-scale method.
The equation governing the complex order parameter takes the form of the Stuart-Landau equation,
and corresponds to the time-dependent Ginzburg-Landau equation for a homogeneous medium. On
the other hand, the asymptotic solution, which is a limit cycle, collapses to the subspace spanned by
the slow modes with no trace of the fast mode. There are number of equivalent methods including
reduction to the center manifold [35, 37, 38].

We first scale out the stress variable by defining τ � φmt and redefine y � ρim � φ m, x � ρm

z � ρc, and all the parameters a � b0 and c in the following are scaled by φ m. The equations for the
mobile, immobile and Cottrel type dislocations are

ẋ �
�
1 � a � x � b0x2

� xy � y � (5.1)

ẏ � b0
�
b0x2

� xy � az � y ��� (5.2)

ż � c
�
x � z ��� (5.3)

In terms of new variables which are deviations from the fixed point
�
xa � ya � za � , namely X � x �

xa � Y � y � ya � and Z � z � za, Eqs (5.1-5.3) take the form

Ẋ ���
�
αX � χY � b0X2 � XY ��� (5.4)

Ẏ ��� b0
�
ΓX � δY � aZ � b0X2 � XY ��� (5.5)

Ż � c
�
X � Z ��� (5.6)

where

α � a � 2b0xa � ya � 1 � χ � xa � 1 �
(5.7)

Γ � ya � 2b0xa � δ � xa � 1 �
Equations (5.4) � (5.6) will be solved using reductive perturbative method. Writing these equations
as a matrix equation where the nonlinear part appears separately from the linear part, we obtain

d �R
dτ � L �R � �N � (5.8)

where

�R �
��
� X

Y
Z

���
� � (5.9)
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Figure 1: The instability region in the a � b0 abd c parameter space. It is bounded by three surfaces, namely,
the c0 surface shown by a series of curved lines, and c � 0 plane and b0

� 0 plane.

L �

��
� � α � χ 0

� b0Γ � b0δ ab0

c 0 � c

���
� � (5.10)

and the nonlinear part �N is given by

�N �
��
� � b0X2

� XY
b0
�
b0X2

� XY �
0

���
� � (5.11)

As we are interested in series expansion around the point of Hopf bifurcation, we consider the
stability of the fixed point as a function of the parameter c. This is done by finding the value of
c � c0 at which the real part of the complex eigen value of the stability of the matrix L vanishes.

Since c is non-negative, we obtain a unique c0 for the allowed pair of a and b0 values within
the instability. Figure 1 shows a three-dimensional plot of the instability region involving all the
three parameters of the model.

To obtain an approximate analytical solution of Eq. (5.8), we follow a reductive perturbative
approach similar to that used in Refs. [33] and [34]. We choose c � c0

�
1 � ε � with 0 � ε � 1, and

write the matrix L as a sum of two matrices, L � L0 � εL1, where L0 is the matrix L evaluated for
c � c0, and

L1 �

��
� 0 0 0

0 0 0

� c0 0 c0

���
� � (5.12)

The eigenvalues of L0 are
λ1 � � 1 �

�
iω and λ0 � T � (5.13)

where ω2

� P, where P and T are sum of the eigen values, and sum of the product of the pairs
of eigen values evaluated at c � c0. Taking the solution for �R as a growth out of the critical
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Figure 2: A plot of the bifurcation diagram of in the a � b0 plane. The instability region is bounded by nearly
parabolic curve and b0

� 0 line. The unshaded (shaded) region is the supercritical (subcritcal) bifurcation.
The light and dark shaded regions refer to the regions where the quintic and septic amplitude equations hold.

eigenmodes, we express it as a linear combination of these eigenmodes:

�R � τ � � Ψeiωτ �r1 � Ψ0eλ0τ �r0 � Ψ
�

e
� iωτ �r �

1 �
� 1

∑
j � 1

Ψ je
λ jτ �r j (5.14)

where �r j’s are right eigenvectors defined by L0 �r j � λ j �r j with �r � 1 � �r �

1. We also introduce left
eigenvectors, �sT

j , defined by �sTj L0 � λ j �sT
j , where T stands for the transpose. Substituting this

expression for �R in the matrix equation, Eq.(5.8), and multiplying both sides of the equation by one
of the left eigenvectors, we obtain an equation governing the corresponding amplitude:

eλ jτ dΨ j

dτ � ε ∑
k

µ jkΨkeλkτ � ∑
l � m � m � l

g jlmΨlΨme
�
λl � λm � τ � (5.15)

Expressions for the coefficients µjk and g jlm are given in Ref. [24].

We express Ψ j as a power series expansion in ε 1 � 2:

Ψ j � ε1 � 2ψ
�
1 �

j � εψ
�
2 �

j � ε3 � 2ψ
�
3 �

j ������� � (5.16)

and introduce multiple time scales such that

d
dτ �

∂
∂τ � ε

∂
∂τ1

� ε2 ∂
∂τ2

�	����� � (5.17)

where τ1 � ετ � τ2 � ε2τ � ����� . Substituting these expressions for Ψ j and d � dτ into the equation for
the amplitudes, Eq.(5.15), we successively solve by equating terms of the same order in powers of
ε . First, terms of 


�
ε1 � 2 � give

∂ψ
�
1 �

j

∂τ � 0 � (5.18)

9
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implying that ψ
�
1 �

j is constant in the time scale of τ . 

�
ε � terms give the equation

∂ψ
�
2 �

j

∂τ � ∑
k � l � l � k

g jkl ψ
�
1 �

k ψ
�
1 �

l e
�
λk � λl

� λ j � τ � (5.19)

which, upon integration, gives

ψ
�
2 �

j eλ jτ
� ∑

k � l � l � k

h jklψ
�
1 �

k ψ
�
1 �

l e
�
λk � λl � τ � (5.20)

where h jkl � g jkl �
�
λk � λl � λ j � . 


�
ε3 � 2 � terms give the equation

∂ψ
�
3 �

j

∂τ �
∂ψ
�
1 �

j

∂τ1 � ∑
k

µ jkψ
�
1 �

k e
�
λk

� λ j � τ � ∑
k � l � l � k

g jkl
�
ψ
�
1 �

k ψ
�
2 �

l � ψ
�
2 �

k ψ
�
1 �

l � e
�
λk � λl

� λ j � τ � (5.21)

where g jkl have been given in Ref. [24]. Using the compatibility condition, we match terms that
are varying on a slow time scale found on both sides of the equality, and extract the slow dynamics

∂ψ
�
1 �

j

∂τ1 � µ j jψ
�
1 �

j � η j � ψ
�
1 �

1 � 2ψ
�
1 �

j � (5.22)

An expression for η j is given in [24]. (The subscript j=1 is left out from Ψ1 for the sake of brevity.)
To 


�
ε1 � 2 � , Ψ � ε1 � 2ψ

�
1 � and, thus, Eq.(5.15) takes the form of a cubic Stuart-Landau equation:

dΨ
dτ � εµΨ � η � Ψ � 2Ψ � (5.23)

Note that µ and η are complex coefficients. Ψ is the complex order parameter given by Ψ �� Ψ � eiΩτ . Both the amplitude and the frequency Ω are easily determined.
This solution exists provided η is negative since µ is positive. η is found to be negative over

a major part of the instability region in the b0-a plane, as shown in Fig. 2 (the unshaded region). In
this case, since the amplitude of the order parameter grows continuously in proportion to ε 1 � 2, the
transition is continuous (a second-order-type transition) corresponding to supercritical bifurcation.
However, there is a relatively small portion of the instability region, shown in the same figure
in different shades, where η is found to be positive implying that the transition is discontinuous
corresponding to supercritical bifurcation. In this regime, one has to go to quintic or even higher
orders in the amplitude equation to obtain an expression for the order parameter. In fact order
parameter equation upto septic order has been derived [24] that covers the whole parameter space
(Fig. 2). The solutions obtained from the above equations agree well with the numerical solution
obtained by solving Eqs. (5.1-5.3). (See for details Ref.[24].)

The above analysis shows that the bistable nature of amplitudes of various densities arises
due to the forward Hopf bifurcation. In the parameter space of a-b0 (see Fig. 2), large regions
correspond to supercritical bifurcation where the amplitude grows smoothly. However, for low
values of b0, there is region of a values for which the bifurcation is subcritical. For such parameter
values, the bistable nature of densities are abrupt across the transition. It is this region that would
be relevant to experimental situation. One more comment that may be useful to the dislocation
community. The present exercise shows that a ‘free energy like potential’ function can be derived
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in the neighborhood of the bifurcation point. However, as the derivation is valid only in the vicinity
of bifurcation point, the nature of solution obtained from this analysis cannot be pushed deep into
the limit of instability. Finally, in principle, a similar analysis can be carried out for the full set of
four variables with applied strain rate as the drive parameter. However, it is clear that the present
analysis already shows that there would be stress drops due to bistable nature of the densities.

6. NEGATIVE STRAIN RATE SENSITIVITY

As mentioned in the introduction, the collective pinning and unpinning of dislocations leads
to the negative strain rate behavior of the flow stress. The fact that the negative SRS branch cannot
be measured in a strict sense is recognized, but the presence of this branch clearly shows up in the
dynamics of the PLC effect. Even so, early formulations and the way experimental measurements
have been carried out has given rise to considerable confusion. Here we discuss briefly the concept
of negative SRS and working methods adopted in the literature, and also provide a dynamical in-
terpretation of negative SRS wherein a clear connection will be established with the slow manifold
of the AK model.

Penning [7] was the first to recognise the necessity of negative SRS in the PLC effect. Theories
of dynamic strain aging assume that the interaction of dislocations with solute atoms when averaged
over the specimen dimensions can be represented by a constitutive relation connecting stress, strain,
and strain rate which is conventionally written as [7]

σ � hε � F
�
ε̇ ��� (6.1)

The basic assumption inherent in Eq. (6.1) is that stress can be split into a sum of two functions,
one of which is a function of ε alone and the other function of ε̇ alone. Then, the SRS is defined as

�

�
∂σ

∂ lnε̇

�
�
�
ε � ε̇

dσ
dε̇

(6.2)

Clearly, this definition uses ε � σ and ε̇ as a state variables even though these variables are history
dependent. At a working level, however, strain is fixed at a small nominal value and the flow stress
at that value is used to obtain the SRS [39].

To begin with, we recall how the negative SRS is ‘measured’ in experiments on the PLC effect.
There are a few attempts to ‘measure’ the unstable branch as a function of the strain rate [39], even
though there is a full recognition of the limitations of such a measurement. Here we describe the
procedure adopted by Kubin’s group [40]. Following the decomposition of Pennings, the strain is
fixed at ε � 8 � 10

� 2 and the mean of the upper stress values of the serrations is taken to represent
the unstable branch. (See for more details in Ref. [40].) A plot of the flow stress as a function of the
strain rate is shown in Fig. 3b. The alloy used is Al � 5%Mg tested at 300 K. Note the logarithmic
scale along the x-axis.

Our approach is based on the relaxation oscillations inherent to the dynamics of the PLC effect.
In this picture one concludes the existence of the unstable branch on the basis of strain bursts, but
one never records any points in this region. This is suitable point of view for our study as we will
use a method that provides a formal basis for the relaxation oscillations arising in the model.
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Figure 3: (a) A schematic plot of the flow stress vs strain rate in case of the PLC. (b) The flow stress at strain
ε � 8 � 10 � 2 for Al � 5%Mg tested at 300 K under constant strain rate [40].

6.1 Slow Manifold Analysis

Within the scope of the AK model, while the negative SRS was numerically determined quite
early [13], analytical approach was provided by Rajesh and Ananthakrishna [12] in terms of the
structure of the slow manifold of the model [27]. The methodology of slow manifold analysis is
basically a “dimensional reduction" procedure that provides a smaller dimensional version of the
original dynamical system that retains the essential dynamics. This is best suited for analysis of
nonlinear slow-fast dynamical systems wherein all trajectories are attracted, in the long time limit,
to a subspace of � n which forms a topological invariant manifold.

The geometry of the slow manifold of the original model has been analyzed in detail [27, 12].
The analysis shows that the relaxational nature of the PLC effect arises from the atypical bent
nature of the manifold. Here we recall some relevant results on the slow manifold of the original
model (D � 0). (We shall later extend the ideas to the situation when the spatial degrees of freedom
are switched on.) Slow manifold expresses the fast variable in terms of the slow variables. At a
working force this is done by setting the derivative of the fast variable to zero [12, 27]

ρ̇m � g
�
ρm � φ � � � b0ρ2

m � ρmδ � ρim � 0 � (6.3)

where δ � φ m

� ρim � a. The variable δ has been shown to have all the features of an effective
stress and thus plays an important physical role [27], particularly in studying the pinning-unpinning
of dislocations. We note that δ is a combination of two slow variables φ and ρ im both of which
take small positive values. Hence, δ takes on small positive and negative values. Using Eq. (6.3),
we get two solutions

ρm � � δ � � δ 2 � 4b0ρim � 1 � 2 � � 2b0 � (6.4)

one for δ � 0 and another δ � 0. For the region δ � 0, as b0 is small � 10
� 4, we get ρm � ρim �

� 1 � δ which takes on small values. On the other hand, when δ � 0, ρm � δ � b0 which is large.
These two regions corresponds to different parts of the slow manifold. A plot of the slow manifold
in the δ � ρm plane is shown in Fig. 4a. For the sake of illustration, we have plotted a monoperiodic
trajectory describing the changes in the mobile density during a loading-unloading cycle. The inset
in Fig. 4a shows ρm

�
t � and φ

�
t � . As can be seen, there is region where the ratio of the mobile to

immobile density is small ρm � ρim � � 1 � δ and negative which is marked as S2. As the ρm is small,
S2 can be identified with the ‘pinned state of dislocations’. In contrast, for positive values of δ , as
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Figure 4: (a)Bent slow manifold S1 and S2 (thick lines) with a simple trajectory for ε̇ � 200 and m � 3.
Inset: ρm (dotted curve) and φ (solid line). (b)The same trajectory in the � φ � ρim � ρm � space.

ρm is large, we refer to it as the ‘unpinned state of dislocations’. These two pieces S2 and S1 are
separated by δ � 0, which we refer to as the fold line [12, 27]. For completeness, the corresponding
plot of the slow manifold in the

�
ρm � ρim � φ � space is shown in Fig. 4b, along with the trajectory

and the corresponding symbols. In this space, one can see that δ � φ m

� ρim � a � 0 is a line that
separates the pieces S2 and S1 of the slow manifold, and hence the name fold line.

We shall map the various regions in Fig. 4b with that in Fig. 4a as the latter will be convenient
for studying dislocation configurations later. In Fig. 4b, the trajectory enters S2 at A and leaves at B.
For this part of trajectory, the value of δ ( in Fig. 4a) decreases from zero to a maximum negative
value and reverts to zero value. Beyond this point as the trajectory leaves S2 in Fig. 4b, δ becomes
positive. The corresponding points are marked on both the figures. In addition, in the inset of Fig.
4a, we have shown the correspondence with ρm. The segment AB in Fig. 4b can be identified with
the flat region of ρm

�
t � in the inset of Fig. 4a with the same symbol. As the trajectory crosses

δ � 0, ∂g � ∂ρm becomes positive and it accelerates into the shaded region (Fig. 4a) rapidly till it
reaches ρm � δ � 2b0 ( point C). Thereafter it settles down quickly on S1 decreasing to D rapidly
till it reenters S2 again at A. The burst in ρm (inset in Fig. 4a) corresponds to the segment BCDA in
Figs. 4a and b. The nature of trajectories for higher strain rate remain essentially the same, but are
chaotic.

6.2 Connection to negative SRS

The above discussion on the slow manifold of the model demonstrates how to separate out
different dislocation mechanisms contribute to the time development of the variables. This should
therefore help us to set up a correspondence between the stress-strain rate space and the slow mani-
fold (Figs. 4 a,b). Having identified the regions of the slow manifold with the pinned and unpinned
states of dislocations, we now consider the variation of stress when dislocations are pinned and are
unpinned. First consider Eq. 2.4 for D � 0 which reduces to

φ̇ � d � ε̇ � ε̇p � � (6.5)
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Figure 5: The empty circles show the phase space projection of stress σ vs. strain rate ε̇p. The dotted line
represents the negative strain rate sensitivity (SRS) region. The thick lines are analytical approximations of
corresponding regions (Ref. [27]).

where ε̇p � φ mρm defines the plastic strain rate. We shall now calculate strain rate sensitivity
numerically using Eqns. (2.1 - 2.4). This is shown in Fig. 5 ( � ). From our earlier discussion,
we know that when the trajectory is on S2, ρm is nearly constant and small in magnitude. As this
implies a pinned configuration, according to Eqs. (2.1 - 2.4), φ should increase monotonically and
hence the segment AB on S2 in Fig. 4 corresponds the rising branch AB in Fig. 5. For this branch,
one can easily see that the (mean) value of S � 3 � 5 using Eq. (6.2). Further, at the point where the
trajectory leaves S2 part of the slow manifold, namely B in Fig. 4b, the value of δ approaches zero
(Fig. 4a), and correspondingly φ reaches its maximum value. Once the trajectory leaves S2 and
jumps to S1, ρm increases abruptly outside S2 (see BC in the inset of Fig. 4a)), δ � 0 line separates
the pinned state from the unpinned state. Thus, δ � 0 physically corresponds to the value of the
effective stress at which dislocations are unpinned. This evidently corresponds to the strain rate
jump from B to C in Fig. 5. Note that the slope ∂φ � ∂ ε̇p for this portion of the orbit is negative and
quite small negative unlike the zero value for the equivalent part in Fig. 3. Further, we know from
Fig. 4, once the trajectory reaches S1, the value of ρm decreases rapidly resulting in the decrease
of ε̇p. Thus, the region CD in Fig. 5 corresponds to CD segment of the trajectory on S1 in Fig. 4
( or inset of 4a). For this branch, one can quickly check that the strain rate sensitivity is positive,
having a mean value ( � 1 � 5) which is a factor of 2 less than that for the branch AB, implying that
the nature of dissipation is quite different from that operating on AB. This is consistent with known
facts about the two branches as mentioned in the introduction. Combining this with the fact that
ρ̇m is decreasing, the branch CD in Fig. 5 can be identified with the slowing down of the mobile
dislocations.

The above picture can be made more concrete by actually calculating stress as a function of
strain rate. This can be done analytically as approximate equations of motion for each part of the
slow manifold AB on S2, BC outside the slow manifold, CD on S1, and unstable DA corresponding
to the jump between the two pieces of the slow manifold are known. Now consider, the equation
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for ε̇p given by

dε̇p

dt � ρmmφ m � 1φ̇ � φ mρ̇m � (6.6)

which on using Eqs. (2.1) and (2.4) gives

dε̇p

dφ �
ε̇p

�
mε̇d

φ � δ � � ε̇2
p

�
md
φ � b0

φm � � ρimφ m

d
�
ε̇ � ε̇p � � (6.7)

Note that in the slow manifold description, all slow variables appear as parameters. However,
since SRS describes the dependence of the slow variable φ as a function of the (derived) fast
variable ε̇p, we will consider the other two variables ρim or δ or both as parameters. Our interest
here is to obtain approximate expressions for ε̇p

�
φ � on different branches. To do this, we use typical

values of δ and ρim for the interval under question. As stated earlier, the trajectory has different
dynamics in different regions of the slow manifold. These are (a) on S2 where ρ̇m is nearly zero for
the entire time spent by the trajectory on S2, (b) just outside S2 where ρ̇m � ρmδ , (c) on S1 where
ρm � δ b0 for ε̇p � ε̇ , and (d) when the trajectory jumps from S1 to S2. Approximate solutions
obtained for these cases are shown in the φ � ε̇p plot by solid lines. (For details see [27].) It is clear
that the approximate solutions shown by the bold lines are quite similar to numerically exact result
shown in Fig. 5 by � .

Now it is possible study the qualitative changes that ensue as the applied strain rate is in-
creased. In our model, for a region of parameters a � b0, there is region for small ε̇ where the
amplitude of the stress drops increases, and thereafter it decreases. This feature is a direct result of
the existence of back-to-back Hopf bifurcations in the model (see [23]). On the other hand, experi-
mentally one sees only a decreasing trend. While the decreasing trend is consistent, the increasing
trend seen in the model for low strain values can be traced to the effect of another crucial parameter
in the model, namely, b0, which corresponds to the remobilization of immobile dislocations. As
demonstrated in the previous section, in our model, a large part of a-b0 parameter space is super-
critical Hopf bifurcation, in particular large values of b0 ( see Fig. 2). This is the region in which
one sees increasing stress drop for small ε̇ . However, there is a region of small values of b0, where
the bifurcation from the steady state is subcritical, i.e., across the transition, the amplitude of the
stress change is abrupt. Clearly, it is possible to choose values of b0 where this jump can be made
sufficiently large in which case the amplitude of the stress drops can be made to decrease with ε̇
right from the onset of the PLC effect as seen in experiments.

7. Visualization of dislocation configurations

When the spatial degrees of freedom are included, there is no additional complication as the
slow manifold is defined at each point. In this case, a convenient set of variables for visualization
of dislocations is

�
ρm
�
x ��� δ � x ��� x � . Here, we recall that we have shown that the model successfully

reproduces the crossover from a low dimensional chaotic state at medium and low strain rates to
a power law state of stress drops seen at high strain rates [23]. The former corresponds to type
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C and B bands and latter to the propagating type A band [19]. If the difference in the dynamics
in these regimes of strain rate is the underlying cause for the different types of bands seen with
increasing strain rate, it would be nice to visualize the configuration of dislocations in the respective
regimes. Thus, our aim is to investigate the nature of typical spatial configurations in the chaotic
and the power law regimes of stress drops and study the changes as we increase the strain rate. For
simplicity, we shall use h � 0 for which we have φe f f � φ . ( It is straightforward to extend the
arguments to the case when h �� 0.) Then, the plastic strain rate ε̇p

�
t � is given by

ε̇p
�
t � � φ m � t � 1

l

� l

0
ρm
�
x � t � dx � φ m � t � ρ̄m

�
t ��� (7.1)

where ρ̄m
�
t � is the mean mobile density ( � ∑ j ρm

�
j � t � � N in the discretized form). With the inclu-

sion of spatial degrees of freedom, the yield drop is controlled by the spatial average ρ̄m
�
t � rather

than by individual values of ρm
�
j � . Further, we note that the configuration of dislocations change

during one loading-unloading cycle. However, one should expect that configurations will be repre-
sentative for a given strain rate. Further, we know that the drastic changes occurs during an yield
drop when ρ̄m

�
t � grows rapidly. Thus, we focus our attention on the spatial configurations on the

slow manifold at the onset and at the end of typical yield drops.
First consider the configuration seen just before and after the yield drop when the strain rate

is in the chaotic regime. In this regime, the stress drop magnitudes are large which implies that the
change in mobile density is large. Figures 6 a, b for a typical value of ε̇ � 120. It is clear that both
at the onset and at the end of a typical large yield drop, the δ

�
j � values which reflect the state of

system ( pinned or unpinned state), is negative and correspondingly the mobile density ρm
�
j � ’s are

small, i.e., most dislocations are in a strongly pinned state. ( Recall that δ signifies how close the
spatial elements are close to unpinning threshold.) The arrows show the increase in ρm

�
j � at the

end of the yield drop. We have checked that this is a general feature for all yield drops in the chaotic
regime of strain rates. Now consider dislocation configuration in the scaling regime at high strain
rates, say, ε̇ � 280, at the onset and at the end of an yield drop shown in Fig. 6 c,d respectively. In
contrast to the chaotic regime, in the scaling regime, most dislocations are clearly seen to be at the
threshold of unpinning with δ

�
j � � 0, both at the onset and end of the yield drop. This also implies

that they remain close to this threshold all through the process of an stress drop. We have verified
that the edge-of-unpinning picture is valid in the entire power law regime of stress drops for a range
of N values. Further, as a function strain rate, we find that the number of spatial elements reaching
the threshold of unpinning δ � 0 during an yield drop increases as we approach the scaling regime.

8. Summary and Conclusions

We first summarize and make appropriate comments wherever necessary. We have shown that
established methods of analysis in the area of dynamical systems can be gainfully employed to get
a good insight the PLC effect. The first question we have addressed is the mathematical mechanism
leading to the bistable nature of dislocation densities which translates to two levels of stress values
seen at low strain rates. In dynamical approaches, the order parameter fields are the slow modes.
The reductive perturbative approach used is a method wherein fast modes are enslaved by the slow
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Figure 6: Dislocation configurations on the slow manifold at the inset and at the end of an yield drop: (a)
and (b) for ε̇ � 120 (chaotic regime), and (c) and ( d) for ε̇ � 280 (scaling regime).

modes in a systematic manner. The resulting equations are for the order parameter variables which
in the present context refers to the amplitude and phase of the limit cycle solutions. This also means
that one associates a free energy like function in the neighborhood of the bifurcation point.

The next question that we have addressed is the origin of negative strain rate sensitivity of
the flow stress, which in general terms also means bistable strain rate values. The idea is that
different parts of phase space can be essentially described by approximate dynamics wherein a
few dislocation mechanisms play a dominant role which is well captured by an analysis of the slow
manifold. In the case of the AK model, the slow manifold have two distinct branches, one where the
dislocations are in the pinned state and another where they are in the unpinned state. Approximate
equations of motions are first obtained from the original complicated coupled equations. Using
this, each branch of the SRS is then calculated. The interpretation is that the unstable branch
corresponds to the unstable manifold of the system of equations on which the unstable fixed point
is situated.

One other advantage of the slow manifold description is that it is particularly useful in giving
a geometrical picture of the spatial configurations. The crucial parameter for the description is δ
which has all features of effective stress of unpinning dislocation. This method also helps us to
visualize dislocation configurations in different regimes of strain rates, for example, type C, B and
A. The first two have been earlier identified with the chaotic state where as the type A with the
power law regime of stress drops [19, 23]. The study shows that the configurations of dislocations
that are largely in the pinned state in low and medium strain rates (chaotic domain) are pushed to
the threshold of unpinning as we increase strain rate ( power law stress drop regime).

Finally, this methodology offers a dynamical reason for the smallness of the yield drops in
the high strain rate region of band A [12, 27]. Indeed, we have shown that this is a direct result
of the existence of a reverse Hopf bifurcation at high strain rates [23, 12, 27]. In this regime, due

17



P
o
S
(
S
M
P
R
I
2
0
0
5
)
0
4
3

Bistability, negative strain rate sensitivity and visualization of dislocation configurations.
G. Ananthakrishna

to softening of the eigen values (as a function of the applied strain rate), the orbits are mostly
restricted to the region around the saddle node fixed point located on the S1 part of the manifold.
Note also that there is a dynamic feed back between the stress determined by Eq. 2.4 and the
production of dislocations in Eq. 2.1 which provides an explanation for the slowing down of the
plastic relaxation. This sets up a competition between the time scale of internal relaxation and the
time scale determined by the applied strain rate (essentially Deborah number). We note that while
the time scale for internal relaxation is increasing, that due to the applied strain rate is decreasing.

Regarding the spatial features seen in the model, we stress that all these features emerge purely
due to dynamical reasons without any recourse to using the negative strain rate sensitivity feature
as an input, as is the case in most models [41, 42, 43, 44]. Even the recently introduced poly-
crystalline plasticity model which reproduces the crossover behavior also uses the negative SRS as
an input [45]. The dynamical approach followed here clearly exposes how the slowing down of the
plastic relaxation occurs due to a feed back mechanism of dislocation multiplication and applied
strain rate as we reach the power law regime of stress drops.
Acknowledgment: The author wishes to acknowledge the award of Raja Ramanna Fellowship.
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