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1. Introduction

There has been much research interest in the static and @balgroperties ofyranular ma-
terials or powders[1, 2, 3, 4, 5, 6]. These materials exhibit properties whiddhiatermediate to
those of fluids and solids. The understanding and charaatenn of these properties poses both
scientific and technological challenges. Perhaps the mmmiritant feature of granular materials is
that the grains undergo inelastic collisions, with the ra@roomponent of velocity being dissipated
on collision. This suggests two classes of dynamical praobla the context of powders:

1) First, let us consider systems where the energy dissip&icompensated by the input of energy
from external driving. Then the system settles into a noitibgium steady-state, which is often
characterized by complex pattern dynamics. There areuwsstandard geometries for agitating
granular materials, e.g., rotation in a drum [7, 8], vilmaton a platform [9], etc. These systems
give rise to diverse examples of pattern formation, whickehattracted much research attention.
2) Next, let us consider the evolution of an energized povidéine absence of an external drive.
The best-known problem in this class is tbeoling of an initially homogeneous system of in-
elastic particles. The inelastic collisions between phasi result in the loss of kinetic energy (or
cooling), and the local parallelization of particle veligs. In the early stages, the density field is
uniform and the system loses energy ih@mogeneous cooling stafelCS) [10]. However, the
HCS is unstable to fluctuations in the density and velocitjd$ieand the system evolves into an
inhomogeneous cooling stei€S) [11, 12, 13, 14, 15, 16, 17, 18]. The ICS is characterizgthe
emergence and growth of particle-rich clusters, with pkesiin a cluster moving in approximately
parallel directions.

In this paper, we use large-scale molecular dynamics (Mykitions to study the HCS and
ICS of an inelastic granular gas. In earlier work [17], wedaharacterized pattern formation in
the ICS via physical quantities like (a) therrelation functionandstructure factorfor the density
and velocity fields; and (b) the growth laws for fluctuationghese fields. Here, we focus on the
velocity distributions in the HCS and ICS (for cases with dimesionalityd = 2,3). For an elastic
hard-sphere gas, an arbitrary velocity distribution rpédolves to the Maxwell-Boltzmann (MB)
distribution. The situation is not so simple for granulartenials with non-MB distributions (e.qg.,
power laws, stretched exponentials, etc.) being repontedrious studies [1, 2, 3, 4, 5, 6].

This paper is organized as follows. In Sec. 2, we briefly revieir understanding of the
cooling problem. In Sec. 3, we present numerical results foor MD simulations. In Sec. 4, we
conclude this paper with a summary and discussion.

2. Phenomenology of the Cooling Problem

Let us consider a homogeneous granular gas, comprisedrdfddiehard spheres with mass
m = 1 and diameteio = 1. Consider a collision between particles labeleahd j. The post-
collision velocities of the particles/( andv;’) are determined from the pre-collision velociti@s (
andv;) by the following rule:

W= Vl—T[ﬁ'(Vi vj)]A,
1+e,. R
v = vj+T[”'(Vi—Vj)]na (2.1)
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wheree (< 1) is the restitution coefficient. Hera,is a unit vector parallel to the relative position
of the patrticles, and points frofto i at the time of collision.

In analogy with the ideal gas, we define the “granular tentpega as the average kinetic
energy:

(v?)
T=217 2.2
d 7 ( )
where(v 2) is the mean-squared velocity. The homogeneous state ciablsimet as [10]
dT ew(TT
dt d ? 8 ? ( )

wherew(T) is the collision frequency at temperature From kinetic theory, this has the approxi-

mate form [19]:
2d—1)/2 .
~50 /2
~ a2 x(n)n T4 (2.4)
whereyx (n) is the pair correlation function at contact for hard sphevits densityn. Substituting
the expression fow(T) in Eq. (2.3) and integrating, we obtalitaff’'s cooling lawfor the HCS:

-2
£(To) t] , (2.5)

T(t)=To [1+ 5

whereTy is the initial temperature. Notice that the collision tirseale becomes slower due to the
ongoing cooling of the granular gas. Therefore, it is coremnto introduce another measure of
time, i.e., the average number of collision@) that a particle suffers till time

7(t) = /0 ‘dteoft) = ? In [1+ S“Zg(’) t] . (2.6)

The collision timet grows logarithmically with real timé for € > 0 (e < 1). In the elastic limit
€ — 0 (e— 1), Eq. (2.6) reduces to the expected fomn(t) = w(Tp)t. In terms of the collision
time, Haff’s cooling law simplifies as

T(1) =Toexp(—er/d). (2.7)

Next, let us discuss velocity distribution functions in th€S. The natural framework to study
these is the inelastic version of tBeltzmann transport equatiowhich is applicable when velocity
correlations are negligible [6]. The elastic case=(1) is characterized by the MB distribution:

d/2 2 2
Pug (V) = (%) exp<_3_2>’ r 2<Z ) (2.8)

0 0

In the near-elastic case £& 1), the distribution function is time-dependent due to tbeling
process, but has a scaling form which differs from the MB fiomc[20, 21]:
1

v 1
P(v,t)zvg(t)F[VO(t)]: F(@). (2.9)
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Here,v3(t) = 2(V?)/d as before, and

1 w
F(@) = —i7 exp(—c?) nZoansh(cz). (2.10)
In Eq. (2.10) F () has been expanded in terms of the orthogonal Sonine poly®mihich satisfy
/omdc @1 exp(—2) S (A)Sn(P) = S w 2.11)

The first few Sonine polynomials are

S() =1,

Si(¢?) = g -

S(P) = d(d; 2) _ (szrz) 2+ %c“, etc 2.12)

The MB function in Eq. (2.8) arises on setting= 1 anda, =0 (n > 1) in Eq. (2.10).

The coefficients, in Eq. (2.10) quantify the deviation from the MB function. &hormaliza-
tion condition dictatesy = 1, and a scaling argument yields= 0. The first nontrivial coefficient
is a» and this has been calculated from kinetic theory as [21]

16(1—e)(1—2¢?)

&= 9 2ad+ 8de— 416+ 30(1—9)&

(2.13)

Brey et al. [22] have confirmed the result in Eqg. (2.13) via Mo@arlo (MC) simulations of
the inelastic Boltzmann equation. However, it is more ratdvto study the applicability of these
results directly in a cooling granular gas. In this contéktithmann et al. [23] have undertaken
MD simulations of inelastic hard disks th= 2. The initial condition for their simulations was a
homogeneous state with an MB velocity distribution. Huthmat al. studied the evolution a
from its initial valuea, = 0 (the MB value). To obtain the coefficierdg(t), we use the expansion:

2k _ k & _q\n k!
(@) = (e § (~1)

e (k—n)!n!
~ (k+d/2)

an(t),

2k
(c™)vB = r(d/2) (2.14)
The first fewa,'s are obtained as follows:
L)
a(t) = 1— I =0, (2.15)
_ (c*)
a(t) = -1+ . (2.16)
6
az(t) = 1+ 3ax— <§:>38, etc. (2.17)

Huthmann et al. found tha;(t) evolved to a “steady-state” value consistent with Eq. (.13
However, the kinetic-theory prediction was not valid in thsS, anda, relaxed back to zero on a
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time-scaler ~ 30 collisions fore= 0.4 <« 1 (see Fig. 9 of Ref. [23]). Similar results were obtained
by Nakanishi [18], who found that the “steady-state” wasgiant even for values @&~ 1. This

is due to the build-up of correlations prior to the onset & t8S. However, these authors did not
investigate velocity distributions deep into the ICS, whi one of the primary aims of the present
study.

3. Resultsfrom Molecular Dynamics Simulations

3.1 Details of Simulations

We used event-driven MD to simulate the granular gasd a2, 3 [24, 25]. The translational
motion of inelastic particles obeyed the collision rule ig.E2.1). The rotational motion of the
particles was neglected. The granular gas consistét-efL0P particles confined in a 8-or 3d
box with periodic boundary conditions. The box sizes wei@sehn so that the number fraction was
p = 0.2 in both cases, with packing fractign~ 0.157 ind = 2 and@ ~ 0.105 ind = 3.

The system is initialized by randomly placing particles ibax. All of these particles have
the same speed but the velocity vector points in randomtibrexso thaty; Vi = 0. This system
is relaxed to an MB velocity distribution by allowing it to@ve till T ~ 100 withe=1, i.e., the
elastic limit. This serves as a typical initial conditiorr faur simulation of inelastic hard spheres.

We will subsequently present results for the time-depeoel@f the temperature and velocity
distribution functions. We have obtained results for cagitise = 0.7,0.8,0.9,0.95. All statistical
results presented in this paper correspond to average$0wedependent initial conditions.

3.2 Evolution Pictures and Haff’s Cooling Law

In Fig. 1, we show evolution pictures of the density and vigjofields for ad = 2 granular
gas with restitution coefficierd = 0.8. The velocity field (frames on right) becomes unstable on
a faster time-scale than the density field. Its evolutionhigracterized by the annealing of point
defects, consisting of vortices th= 2 (and monopoles id = 3). The evolution of the velocity
field in Fig. 1 is analogous to ordering dynamics in the twaiponent XY model [26]. In the XY
model, vortices and anti-vortices annihilate as this redube surface tension. However, in the
granular gas, the “surface tension” has a dynamical origin,the local parallelization of particle
velocities on collision. Notice that the velocity field is@nserved variable as the particle collisions
conserve momentum.

The pattern dynamics in the velocity field is accompanied lmyuatering instability in the
density field (frames on left of Fig. 1). The formation of dkrs can be understood as follows.
Consider a density fluctuation in the HCS. In the denser rsgithere is more rapid collision of
particles and faster cooling. Thus the pressure becomes lovthe denser regions, and particles
are sucked into these regions, reinforcing the densityuaticin [11]. The evolution of the granular
gas in the ICS is described by nonlinear hydrodynamic eguasgtfior the density and velocity fields.
In recent work, Das and Puri (DP) [17] have studied pattemadyics in the nonlinear ICS regime.
They characterized pattern formation via growth laws, dredsicaling behavior of the correlation
functions and structure factors. DP argued thatgtneaming-and-aggregatiodynamics of the
granular gas results in conservation on the cluster lengte swhich diverges with time. Thus,
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Figure 1. Evolution pictures of the density field (frames on left) aredoeity field (frames on right) in
the inhomogeneous cooling state ofl &= 2 granular gas. The pictures correspond te 100, 1000 for a
system with particle numbed = 262144, packing fractiop ~ 0.157, and restitution coefficiert= 0.8.
The velocity field is obtained by coarse-graining the sysietim boxes of siz€17.90)2, and plotting the
overall velocity for each box.

the asymptotic dynamics obeys a global conservation laugiwik a much weaker constraint than
a local conservation law. In related work, Wakou et al. [2&}dndemonstrated that the evolution
of the granular flow field can be formulated as a time-depen@émzburg-Landau equation for a
nonconserved order parameter.

In Fig. 2, we plot the normalized kinetic ener&(t)/E(0) vs. 1 for the 24 case withe =
0.7,0.8,0.9,0.95. The data is plotted on a linear-log scale — the initisddindecay corresponds to
Haff's cooling law for the HCS. The data deviates from Haféisr when correlations build up in
the system. We define the HESCS crossover time as the time where the temperature deviates
from the Haff prediction by more than ten percent.

In Fig. 3, we show evolution pictures of the density and vieydields for ad = 3 granular gas
with e= 0.9. The corresponding-dependence of the normalized kinetic enefgir)/E(0) vs. T,
is shown in Fig. 4.

3.3 Veocity DistributionsintheHCSand ICS

Next, let us study the velocity distributions in the HCS a@$! A scaling plot ofF(c) vs.
c [cf. Eq. (2.9)] does not show significant deviations from MB function, and we do not show
it here. Rather, we directly study the time-dependence @fXfnine coefficients in Egs. (2.15)-
(2.17). As the initial velocity distribution is of the MB for, a,(1 =0) =0V n> 1. Let us first
discuss the behavior of the Sonine coefficientIn Fig. 5, we plotay(7) vs. T ford = 2,e=0.8;
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Figure 2: Time-dependence of the granular temperaturg 12, shown on a linear-log scale. We plot the
normalized kinetic energl(1)/E(0) vs. collision timet for e= 0.7,0.8,0.9,0.95. The solid lines denote
Haff’s law from Eqg. (2.7).

Figure 3: Analogous to Fig. 1 but for thé = 3 case. The pictures correspondrte- 50,500 for a system
with N =262144 9~ 0.105, ance= 0.9. The density field (frames on left) is plotted by coarseiring the
system into boxes of siz8.40)3. Boxes with more than 15 particles are marked black, and bitvees are
unmarked. For the velocity field (frames on right), we coaysain the system into boxes of siz£0.90)3,
and plot the overall velocity for each box.
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Figure4: Analogous to Fig. 2, but for thé = 3 case.

andd = 3,e= 0.9. We show data for individual runs (dotted lines) and theerage (solid line).
The frames on the left show the early-time behavior, andrdmads on the right show the behavior
for extended times — upto= 1000 ford = 2 andt = 500 ford = 3. In the early HCS1 <« 1),

the velocity correlations are negligible and the predidiof kinetic theory should apply. On a
time-scale oft ~ 10 collisions,a, saturates to a “steady-state” value. The data sets in (c) are
consistent with the kinetic-theory prediction from Eq.1). — denoted by a horizontal line in the
frames on the left. On the other hand, the data set in (a)dfer2, e = 0.8) does not saturate
to the value predicted by Eqg. (2.13). Recall that kinetiotligs only applicable when there are
no velocity correlations — however, these build up rapidiyed <« 1 and low dimensionality. The
frames on the left also show that the data sets for individuad are comparable in the early time-
regime. However, at later times & 1), the individual data sets show strong fluctuations around
ap ~ 0, inspite of the large system sizéé £ 10°) simulated here. The ICS consists of clusters of
particles streaming in independent directions — an avegagyier these clusters is expected to yield
a Gaussian distribution of velocities [16, 18, 28]. Our {titee results are consistent with the MB
resulta, = 0, but the average value e} still shows large variations with.

In Fig. 6, we plot the Sonine coefficients, as,as,as vs. T for the same parameter values
as in Fig. 5. We observe that the velocity distributions Ircakes are primarily described by the
coefficienta, — the values of higher coefficients are smaller by upto anrosflenagnitude. In
general, the behavior of the higher coefficients is analegouthat fora, in Fig. 5. There is an
early-time regime where the data sets for independent meng@oroximately coincident. At later
times, there is a large variation in thg-values for various runs — the corresponding averages are
shown in Fig. 6.
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Figure5: (a)-(b) Time-dependence a$ for d = 2,e = 0.8. The dotted lines denote vs. 1 for individual
runs, and the solid line is the corresponding average. Tdrads on the left and right show the early-time
and late-time behaviors, respectively. A horizontal lieeiawn in (a) at, ~ —0.022, corresponding to the
kinetic-theory prediction in Eq. (2.13) [21]. The HESCS crossover occurs @t ~ 48. (c)-(d) Analogous
to (a)-(b) but ford = 3,e=0.9. The line in (c) corresponds & ~ —0.015. The HCS»ICS crossover is
T~ 212.

4. Summary and Discussion

Let us conclude this paper with a summary and discussioneofasults presented here. We
have undertaken large-scale molecular dynamics (MD) sitims of freely-evolving granular
gases. The system initially loses energy (or cools) in a lgemeous cooling state (HCS). At
later times € > 1¢, wheret. is a crossover time), the growth of fluctuations in the dgnaiid
velocity fields drives the system into an inhomogeneousingdtate (ICS). Our primary focus
in this paper is the nature of velocity distributions in th€$land ICS. We model the velocity
distributions by a Sonine polynomial expansion [cf. Eql(@]. The magnitude of the Sonine
coefficientsa, measures the departure from the Maxwell-Boltzmann (MBiyidistion function.

We find that the velocity distribution in all cases is prinhadescribed by the coefficiemb. In
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Figure6: Time-dependence of Sonine coefficieatsas, a4, a5 for (a)d = 2,e=0.8; (b)d = 3,e=0.9.

the HCS a, saturates to a value which is consistent with the kinetioth prediction in Eq. (2.13).
However, at later times, our MD results fay are consistent with the MB valu® = 0. We should
stress that individual data sets far vs. T show strong fluctuations aroursd = 0, inspite of the
large system sizedN(= 10°) and averaging (50 initial conditions) in our MD simulatson

Our present interests in this problem include alggng behavior of the velocity autocorrelation
function during the cooling process. We will present resatt this in an extended publication [29].
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