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1. Introduction

Magnetic fields play an essential role in the behaviour of superconducting materials. Beyond
the well known diamagnetic regime obtained for low magnetic inductions (Meissner effect), the
superconductive state is either broken (Type I superconductors) or characterised by a mixed phase
(Type II superconductors). As first discussed by Abrikosov [1], in the mixed phase magnetic flux
is quantised and carried by vortex lines which are arranged in the form of a triangular lattice. The
scientific breakthrough that came along with the discovery of high temperature superconductors
(HTSC or high Tc materials) has significantly moved the attention of the scientific community
towards properties of the mixed phase, as most high Tc materials behave in a magnetic field as
Type II superconductors.

It is now accepted that at low disorder vortices arrange into a topologically ordered phase:
the Bragg glass [2]. The existence of this phase, characterised by long distance ordering, slow
relaxation, and other glassy features, has been experimentally confirmed [3]. As in conventional
matter, strong enough fluctuations destroy long range order: when temperature is raised the vortex
lattice melts into a vortex liquid [4]. Typical melting theories are based on phenomenological
criteria with disorder [5], or involve dislocation proliferation mechanisms [6].

Fluctuations are also provided by defects that are intrinsically present in these materials. Vor-
tex density grows linearly with the applied magnetic induction. The theory shows that effects of
disorder are stronger for high fields [7] and lead to complex glassy phases, often associated by
dislocation proliferation phenomena.

At the same time, the observed lattice contains topological defects, such as dislocations and
grain boundaries. The latter are the signature of a vortex polycrystal with crystalline domains of
different orientations [8]. Vortex polycrystals have been observed in field-cooling experiments, in
various superconducting materials such as NbMo [8], NbSe2 [9, 10, 11], BSCCO [12] and YBCO
[13]. The grain size is typically found to grow with applied magnetic field [9, 8]. Moreover,
two-sided decoration experiments show that the grain boundaries thread the sample from top to
bottom [9], i.e., one observes a columnar grain structure. Despite the abundance of experimental
observations, there is no detailed theory accounting for the formation of vortex polycrystals.

Properties and behaviour of isolated dislocations in the vortex lattice have been thoroughly in-
vestigated in the past [14, 15], but the role of grain boundaries has been often overlooked, although
they are often encountered in numerical simulations [16, 17]. For instance, the vortex plastic flow
in the Corbino disk geometry is characterised by radial grain boundaries sliding in the tangential
direction [16]. In addition, recent numerical simulations indicate the presence of an intermediate
polycrystalline stage before the melting transition [17]. This suggests that, in some conditions,
grain boundaries may play a role in the melting process, as in the theory of grain boundary induced
melting of two dimensional crystals [18].

In the following, we introduce grain boundaries in flux line lattices as linear arrays of disloca-
tions and discuss their elastic properties and behaviour in the presence of disorder. We first present
an analytical study of vortex polycrystal growth in terms of the competition between elastic prop-
erties of grain boundaries and disorder. We discuss the problem of thermally activated creep of
grain boundary structures and finally analyse numerically the role of a polycrystalline ordering in
the presence of external driving forces induced by currents.
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2. Elasticity of grain boundaries

Properties of grain boundaries in vortex matter determine their response to fluctuations in-
duced by disorder, external stresses or temperature. A low-angle grain boundary can be considered
as a linear array of dislocations, whose dynamics is ruled by internal stresses. While ideally a
grain boundary minimises its energy by remaining flat, the action of external perturbations leads to
deformations that can be described by the theory of elasticity. We compute the self-interaction of a
deformed grain boundary extending the results obtained for isotropic elasticity [19] to the case of
the highly anisotropic vortex lattice.

An effective description of the vortex lattice is provided by its representation as an elastic
crystal of flux lines. On large enough length scales, the elastic energy of the vortex lattice can be
expressed in terms of the vortex displacement field u as follows

H =
1
2

∫

d3r
[

c66(∇u)2 +(c11− c66)(∇ ·u)2 + c44(∂zu)2] , (2.1)

where c11, c44, c66 are the local elastic moduli, and the magnetic induction B is parallel to the z
direction. Within this representation, an ideal low angle grain boundary can be described by an
infinite periodic array of straight edge dislocations [20] in the vortex lattice oriented along the z
axis, spatially arranged along the y axis with an array spacing equal to D, and with Burgers vectors
b pointing along the x direction. The wandering of the i-th dislocation line is given by Xi(z),
assuming that all displacements take place within glide planes, i.e. the xz plane, so that Xi(z) plays
the role of the displacement field of the grain boundary as well.

The grain boundary elastic energy can then be obtained [18] by a suitable expansion of Eq. (2.1).
The resulting elastic energy which in Fourier space reads

HGB =
πb2

2D2

∫

dQy

2π

∫

dkz

2π
(2c66|ky|+

√
c44c66|kz|)X(ky,kz)X(−ky,−kz). (2.2)

Equation 2.2 shows that the elastic energy cost of a small deformation X in a grain boundary is
proportional to that square of the deformation and has a linear dependence on the modulus of the
deformation wave-vector. The different coefficients of kx and ky reflect the anisotropic character
of the vortex lattice. However, it is a common procedure to rescale the y coordinate by a factor
1
2

√

c44

c66
[7], in order to get an isotropic reference frame. The elastic Hamiltonian thus becomes

HGB = K
πb2

2D2

∫

d2k
(2π)2 |k|X(k)X(−k), (2.3)

being k = (ky,kz) and K =
√

c44c66.

In this limit, the same result is obtained as predicted by the isotropic theory [19]. The nonlocal
character of the elastic kernel (∝ k) implies that long range interactions between dislocations stiffen
the grain boundary, and that a surface tension approximation is not suitable for a correct description
of its elastic properties. In the presence of disorder, grain boundaries are expected to roughen less
than isolated dislocations.
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3. Disorder and pinning theories — an overview

Quenched disorder induces elastic deformations of the grain boundaries and the interplay of
elasticity, disorder and driving forces acting on the boundary can be analyzed in the framework of
pinning theories [7]. Pinning of isolated dislocations and of linear dislocation arrays in crystalline
materials has been investigated in the past [19, 21], in order to provide a microscopical explanation
of solution hardening. Here we aim to apply our studies on grain boundary pinning [19] to the
context of vortex crystals.

As in the case of isotropic crystals [19], vortex grain boundaries are much stiffer than isolated
dislocations, possessing a non-local long-range surface tension. However, the description of the
interaction between elasticity and disorder that was formulated for grain boundaries in crystalline
materials needs to be refined in the case of vortex lattices. The strong pinning approach (holding
for low defect concentrations, see Ref. [19]) is substantially unchanged: in the case of dilute pin
densities, obstacles interact individually with dislocation lines.

In the case of weak pinning, instead, random forces are mediated by the vortex lattice. Quenched
disorder (vacancies or interstitials in the underlying crystalline structure of the superconducting ma-
terial, and/or substitutional impurities) deforms the vortex lattice inducing random strain fields. The
corresponding random stress fields act on vortex dislocations and dislocation arrays, determining
their pinning [6, 18].

Driving forces for grain boundary motion can be externally induced by a current flowing in
the superconductor or internally generated by the ordering process during grain growth [22]. The
presence of a driving shear stress τext gives rise to a to a total driving force per unit length equal to
Fdrive = τextbL/D [23].

At low stress grain boundaries are pinned and the depinning stress τc can be estimated from
conventional scaling arguments [18, 23]. For low values of the stress (τext ¿ τc) instead, the
response of a grain boundary is mainly due to thermally activated motion in a disordered envi-
ronment [7]. In this case, we expect a highly non-linear creep motion with an average velocity
v∼ exp[−C(τc/τext)

µpl /T ], where C is a constant, and µpl is the plastic creep exponent that quan-
tifies the divergence of the energy barriers U(τext)∼ τ−µpl

ext separating metastable states.

4. Strong pinning, grain growth and thermal activation

Experimental evidence of polycrystalline order in vortex lattices is provided by direct imaging
of the lattice structure in Bitter decoration investigations. Here we propose to study the emergence
of polycrystalline order from the point of view of grain growth. A typical setup for decoration ex-
periments consists in lowering the temperature after a magnetic field has been applied to the sample
at temperatures above the superconducting phase. During this procedure, known as field cooling,
magnetic flux is already present in the sample as it is cooled into the mixed superconducting phase.
It is thus reasonable to expect that vortices are originally disordered and that, due to their mutual in-
teractions, undergo a local ordering process. During this process, many dislocations annihilate, and
most of the remaining dislocations arrange themselves into grain boundaries with various orienta-
tions. The growth of crystalline vortex grains is due to the motion of these separating boundaries.
The resulting polycrystalline structure has been indeed observed experimentally by means of Bitter
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decorations of both high [12, 13] and low Tc [9, 10, 11] superconducting samples. The effect of
quenched disorder is to pin the grain boundaries, hindering the growth process. Thus it is important
to envisage the growth of vortex polycrystals as the result of the competition between elasticity and
disorder.

Grain growth is driven by a reduction in energy: for an average grain size R and straight
grain boundaries, the characteristic energy stored per unit volume in the form of grain boundary
dislocations is of the order of Γ0/R, where Γ0 is the energy per unit area of a grain boundary.
Hence, the energy gain achieved by increasing the grain size by dR is Γ0/R2dR. Physically, the
removal of grain boundary dislocations occurs through the motion of junction points in the grain
boundary network. As junction points must drag the connecting boundary with them, which may be
pinned by disorder, motion can only occur if the energy gain at least matches the dissipative work
which has to be done against the pinning forces. The dissipative work per unit volume expended
in moving all grain boundaries by dR is τcb/(DR)dR, where τc is the pinning force per unit area.
Balancing against the energy gain yields the limit grain size

Rg ≈
DΓ0

bτc
. (4.1)

Determining the grain size is thus a matter of finding how the critical stress can be expressed
in terms of general properties of disordered vortex matter. To proceed, we have to specify the
nature of the “disorder”. Several assumptions can be made. In the following we will articulate
our discussion around the concept of pin density distinguishing weak pinning and strong pinning
regimes.

In the weak pinning regime quenched disorder pins the vortex lattice (of lattice constant a)
over a distance Ra (Larkin length). Grain boundaries perceive a distribution of stresses due to the
elastic straining of the vortex lattice [6, 15]. Such a distribution acts as a pinning field for the grain
boundary and the depinning stress can be computed within the framework of collective pinning
theory: the energy associated with bending a grain boundary fraction of linear dimension L < Ra

over the characteristic distance X can be estimated as (see Reference [23]):

E =
Kb2

D2 LX2− Kab
D

LX

(

L
Ra

)1/5

+ τbL2X/D . (4.2)

The first term represents the elastic energy derived in Eq. 2.2, the second the pinning energy [23]
and the third the work done by an external driving stress τ in displacing the boundary. Mini-
mizing the first two terms of Eq. 4.2, for X = a ' b [15], we obtain the plastic Larkin length
Lp ' (b/D)5Ra, which is typically smaller than Ra. The depinning stress is identified as the stress
necessary to depin a section of dimension Lp: τc = Kb2/(DLp). Combining this expression with
Eq. (4.1), using Γ0 ' Kb2/D, we obtain Rg ∼ Ra. The identification of Rg with Ra was proposed in
Ref. [8], but was not confirmed by experiments (see Fig. 1 and Ref. [8]). We therefore propose to
interpret the experimental data under a strong pinning assumption.

In this regime dislocations forming the grain boundary are pinned by individual obstacles.
We consider here the case of columnar defects, oriented along the z axis. Although not general,
this is a sensible assumption, as it holds in a wide variety of experimentally observed vortex ar-
rangements. Its quasi two-dimensional characterisation mimics vortex lattices typically observed
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in highly anisotropic superconductors, where vortices are split onto weakly coupled layers. This
is the case, for instance, in the experiments of Ref. [8] where grain boundary pinning is provided
by screw dislocations in the superconducting crystal. Under these circumstances, the problem be-
comes effectively two dimensional and the grain boundary is a one-dimensional string exhibiting
long-range elasticity. Hence we can directly apply the strong pinning theory of Friedel [24].

The basic idea is to consider a grain boundary segment as it depins from a pair of strong
obstacles. The length L of the segment corresponds to the effective spacing between obstacles
along the grain boundary, and it forms a bulge of maximum width X . After the grain boundary
segment overcomes the pin it will travel by an amount which is, again, of the order of X and,
hence, sweep an area of the order of LX . At the depinning threshold, the grain boundary starts
to move through a sequence of statistically equivalent configurations, and the freed segment will
encounter, on average, precisely one new obstacle in the course of this process. This argument
leads to the condition LX ' 1/ρ where ρ is the area density of pinning defects. The elastic energy
per unit length of the bulge of width X and extension L is 2c66b2X2/D2, and should balance the
work per unit length τextbLX/D done by the driving stress τext in bowing the boundary. This energy
balance provides a relation between L and X . Furthermore, at depinning the total force hτextbL/D
should be equal to the defect strength f0, where h is the sample thickness. Combining the equations
above we obtain the depinning stress τcb = D f0/(hL f ), where the Friedel length L f is given by
L f = 2c66b2h/( f0ρD2). Inserting the expression for the critical stress in Eq. (4.1) together with the
scale-independent surface tension Γ0 = 2c66b2/D, we obtain

Rg

b
≈ c2

66b3h2

D3 f 2
0 ρ

. (4.3)

In order to use this result to fit the data in Ref. [8], we have to express it in terms of the
reduced field B̃ ≡ B/Hc2, where Hc2 is the upper critical field of the superconductor. The field
dependence is implicit in the parameters b and D, i.e. b ∼ D ∼ a ∼ B̃−1/2, as well as in the shear
modulus c66 ∼ B̃, and in the pinning strength f0. The pinning force due to a screw dislocation
was computed in Ref. [25] and is given by f0 ∝ B̃1/2(1− B̃) ln(ξsc/2.7b0B̃)≈ B̃1/2 ln(ξsc/2.7b0B̃),
where ξsc ' 100Ȧ is the coherence length [26], and b0 ' 5Ȧ is the Burgers vector of the screw
dislocation [25]. The resulting expression predicts a linear field dependence of the grain size with
logarithmic corrections. The agreement with magnetic decoration data from Ref. [8] (Fig. 1) is
quite satisfactory, especially if compared to the estimate based on local elasticity assumptions.

Although in field cooling experiments the effects of perturbations due to pinning become
predominant, thermal fluctuations could induce an activated motion of the grain boundaries, par-
ticularly in high Tc materials. This problem can be approached generalising scaling theories of
creep for vortices and dislocations [7, 15]. In the weak pinning regime, the relevant energy
barrier that the grain boundaries have to surmount under an applied stress τext < τc is given by
U(τext) = U0(τc/τext)

µpl , where U0 ' Kb3Ra and µpl = 1 (Reference [18]). In our case, the applied
stress is the ordering stress, so that we have τc/τext ' R/Ra. Using this expression in the energy
barrier for thermally activated grain growth, we obtain

t0
dR
dt

= Ra exp

[

− U0

KBT
R
Ra

]

, (4.4)
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Figure 1: The grain size of a vortex polycrystal experimentally obtained from Bitter decoration of a NbMo
sample as a function of the applied magnetic field (Ref. [8]) is compared with the theoretical predictions.
For comparison we report as well the result obtained using Friedel theory with local elasticity and the earlier
estimate from Ref. [8], formally equivalent to our weak pinning result.

where t0 is the appropriate characteristic time. The equation can readily be solved yielding, in
the long time limit, a logarithmic growth R(t)/Ra = kT/U0 log(t/t0). This law holds for R > Ra

when the grain boundaries would be pinned at T = 0. In the initial growth stage R¿ Ra, we can
neglect pinning forces and the dynamics is ruled by the ordering stress: Ṙ∼ 1/R, yielding a power
law growth R(t) ∼

√
t. Besides thermal activation, grain boundaries can move in response to an

applied current [15]. Details on this aspect will be given in the following section.

5. Effect of grain boundaries on the critical current

The critical current is an important property of Type II superconductors, since it represents
the current below which vortices are pinned and the material conducts without resistance. This
technological aspect, however, only partly explains the role of critical current in the system un-
der examination. Externally induced currents produce Lorentz-like driving forces in the flux line
lattice. This system can be easily mapped to a general depinning model for a random elastic mani-
fold, where the critical current acts as a depinning force. Such a problem has been analysed in the
past and has led to a further broadening of the vortex phase diagram. An exhaustive review can
be found in Ref. [7]. Our concern is to point out how this scenario changes in the presence of a
polycrystalline arrangement.

In Section 2 we introduced non-local elasticity properties of grain boundaries in vortex matter.
This result dramatically influences the behaviour of such systems in the presence of disorder [18].
For instance, it is reasonable to believe that in vortex polycrystals, properties of critical current
could change significantly. One can actually expect the critical current to be higher in the presence
of grain boundary networks. In order to assess the validity of that statement, we have performed a
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(a)

(c) (d)

(b)

Figure 2: Relaxation of the topological defect structure from a simulation of Nv = 4128 interacting vortices
after a sudden field cooling from a disordered vortex state in a simulation cell of linear size L = 36λsc. The
colored five/seven-fold coordinated vortices (filled circles) indicate dislocations in the vortex lattice. The
final configuration (snapshot (d)) is completely pinned by disorder. There one can observe a polycrystalline
structure with most dislocations arranged into grain boundaries.

numerical study of the problem. In the following, we will briefly review our results, emphasising
how they confirm predictions based on our theoretical model and match the behaviour commonly
observed in experiments.

In the simulation of arrays of Nv interacting vortices, a polycrystalline vortex structure is ob-
tained by relaxing at zero temperature a random initial vortex arrangement. This process mimics
a typical field cooling experiment in which the temperature is rapidly decreased from above Tc in
presence of a field. The system moves rapidly towards lower energy configurations correspond-
ing to zero temperature and thermal effects can thus be disregarded. In this case magnetic flux
is already present in the material in the form of initially disordered vortices. Once grain growth
has stopped, the system has a polycrystalline structure and an external current can be simulated by
simply applying a constant Lorenz force. The critical current is then defined as the current at which
vortices start to move steadily.

During the relaxation process, it is sensible to disregard thermal effects, mimicking the dynam-
ics of the vortex system after a sudden quench of the superconducting sample from high tempera-
tures (or equivalently, random vortex configurations) towards the lower energy states corresponding
to zero temperature. After a transient regime, the dynamics stops due to disorder.

The gradual ordering process involves the arrangement of dislocations in grain boundaries
(Fig. 2). Long range elastic stress fields are screened and the vortex array rearranges into a poly-
crystal, which evolves in time until the residual stresses accumulated in the distorted vortex lattice
drop down below the critical value τc. At this point, grain boundaries get pinned by disorder limit-
ing the average grain size (see Fig. 2(d)). Moreover, the limit grain size Rg/a appears to increase
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(a) (b)

(d)(c)

Figure 3: Pinned vortex structure for different values of the magnetic field: (a) Nv = 1460, (b) Nv = 2064,
(c) Nv = 2919, (d) Nv = 4128, after a sudden field cooling from a disordered vortex state in a simulation cell
of linear size L = 36λsc. The colored five/seven-fold coordinated vortices (filled circles) indicate dislocations
in the vortex lattice. The average grain size in the resulting polycrystalline structure seems to grow with the
intensity of the average magnetic field inside the cell.

with magnetic field B ∝ Nv (see Fig. 3), in qualitative agreement with experimental results [8] and
confirming the theoretical predictions reported in Section 4.

Once simulations have clarified the mechanism behind polycrystal formation, one can proceed
introducing external forces into the system, in order to investigate the behaviour of the critical
current Jc(B). An externally applied current may induce the annealing of metastable configurations
(see Figs. 2 and 3), resulting in initial transients of plastic flow, which might eventually cease once
a new metastable configuration is found, provided that the current is below the threshold value.

Results for the investigation of the dependence of the critical current on the magnetic field
are summarized in Fig. 4. Along with the initially polycrystalline arrangement, the study has been
also led for a grain boundary-free initial configuration. The qualitative and quantitative differ-
ences between the two curves represented in the figure are due to the presence of grain boundaries.
The presence of these topological defects in the vortex configuration enhances the critical current
needed to give rise to a steady regime of plastic flux flow, that in this case, appears to be controlled
by grain boundary motion.

Plastic deformation of crystalline materials is usually mediated by proliferation and motion of
dislocations. Nonetheless, another possible mechanism for plastic flow is the glide motion of grain
boundaries which, as in this case, can be the most relevant mechanism for small grain sizes, as in
the case of nanocrystals.

According to numerical results, grain boundaries are more efficiently pinned by disorder, as
single grains are supposed to adjust better to the disordered landscape than a whole perfectly or-
dered lattice. In both cases, we observe the decrease of Jc with an increasing magnetic field (i.e.

9



P
o
S
(
S
M
P
R
I
2
0
0
5
)
0
5
0

Plasticity and grain boundary motion in vortex matter Paolo Moretti

density of vortices) until this reaches a plateau region.
Experiments show that for even higher magnetic fields, the critical current exhibits a sudden

increase. Close to the upper critical field Bc2 = Φ0/2πξsc (Φ0 being the magnetic flux quantum), the
penetration depth λsc and the coherence length ξsc are supposed to diverge, and the renormalisation
of such parameters is expected to explain that sudden increase [27]. However, the system studied
above is far below Bc2 , as we are not concerned about the behaviour in the vicinity of that transition.

0 1000 2000 3000 4000 5000
Nv

0

0.002

0.004

0.006

0.008

0.01

J c

With GB
Crystal

Figure 4: The critical current Jc as a function of the number of vortices Nv in the simulation cell. The
number of pinning points is Np = 4128, the cell size L = 36λsc. The upper line shows the results obtained
starting from initial field-cooled configurations containing grain boundaries (GB), whereas the lower curve
shows the numerical results obtained from perfect crystalline initial configurations. Currents are measured
in units of Gb2c/Φ0.

Regarding experiments, our results match, at least on a qualitative basis, the behaviour exhib-
ited by vortex matter in critical current measurements at low magnetic fields. As stated above, grain
boundaries are commonly observed in field-cooled (FC) samples. On the other hand, ordered vor-
tex crystals can be obtained in zero field cooling (ZFC) experiments, i.e. applying a magnetic field
only after temperature has been lowered to the expected value [28, 29, 30]. The FC state is usually
characterized by a higher critical current and has been proven to be metastable [29, 30]. These
aspects result in a peculiar hysteretic behaviour commonly observed in critical current measure-
ments [29, 30] and I−V characteristics [28]. In our numerical analysis, the evaluation of critical
currents in perfect vortex crystals (lower line in Fig. 4) fairly mimics the phenomenology of ZFC
measurements, while results for the grain boundary model (upper line in Fig. 4) can be interpreted
as a simulation of FC response. Hysteresis is in fact reproduced by our simulations when we start
from the polycrystalline state. As shown in Fig. 5, when the current J is ramped up vortices start to
move at a current Jc1, with a velocity that then increases with the current. If the current is ramped
down from the moving state, vortices get pinned at a lower value of the current Jc2 corresponding
to the critical current measured for a perfect crystal upon ramping up the field. Notice the similarity
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with the experimental results of Ref. [28]. Once more, we should underline that these results hold
only for low values of the applied field. As the magnetic induction approaches its critical value, a
sudden increase in measured critical currents is observed in both the ZFC and the FC experimental
setup [29, 30].

0 0.002 0.004 0.006 0.008 0.01
J

0

0.002

0.004

0.006

0.008

0.01
<

V
>

Figure 5: The steady state average velocity of the vortices as a function of the applied current J. The current
is ramped up (and down) in steps and is kept constant after each step until the system reaches a steady state.
The arrows indicate the direction of the ramp. The number of vortices is Nv = 2064, the number of pinning
points Np = 4128, the cell size L = 36λsc. Currents are measured in units of Gb2c/Φ0.

6. Conclusions

Grain boundaries and grain structures are often observed in vortex lattices. However no the-
ory currently accounts for polycrystalline ordering. We derived the exact solution for the elastic
problem of a grain boundary in a flux line lattice and formulated a theory of a vortex polycrystal
in the presence of disorder. Grain growth is first examined and the derived average grain size is
found in good agreement with experiments. Then the problem of transport in the underlying super-
conductor is addressed. Pinning of topological defects in the vortex lattice is expected to influence
the response to an applied current. Currents act in the form of external Lorentz forces driving vor-
tex motion. Below a critical current, the vortex lattice is pinned by disorder and conduction takes
place without resistance. Above the critical current, instead, vortices start gliding in the transversal
direction, causing dissipation. We found that in the presence of a polycrystalline arrangement, a
higher critical current is expected, and the region characterised by zero-resistance is broader. The
hysteretical behaviour commonly observed in experiments proves to be a natural consequence of
grain boundary depinning.
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