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A major goal in dislocation theory is the development of a coarse-grained method that would

enable predictions of dislocation response without resolving the degrees of freedom of all the

dislocations. While a number of possible coarse-grained theories have been proposed, all of

these need information about structures at scales smaller than the coarse-graining volume. Here

we present results from dislocation simulations that yield scaling relations with the hope that

they can provide a framework for modeling the sub-scale dislocation structures and dynamics.

For example, we show that dislocations have a self-similar (fractal) structure over wide range

of stress/strain; dislocations move by means of avalanches that have power-law (self-organized

critical) behavior; and the energy, order and noise all scale as powers of the density, with a well-

defined balance between noise and order.
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1. Introduction

Plastic deformation in crystalline metals is a consequence of the motion of large numbers of
dislocations. In a deformable material, such as a metal, typical dislocation densities are around
1013 to 1015/m2, i.e., 1013 to 1015 meters of dislocations in a cubic meter of material. The mobility
of dislocations gives rise to plastic flow at relatively low stress levels compared to the theoretical
strength. Dislocations also form organized structures such as walls, cells and pile-ups. Differences
owing to the topological constraints placed by crystallography greatly add to the complexity of
describing dislocation microstructural evolution and dynamics.

Figure 1: Schematic stress-strain
curve for anfcc single crystal under
single-slip conditions.

We know from experiments that despite the complexity
of dislocation structure and dynamics, it is possible to de-
scribe the overall deformation behavior of a material with
relatively few variables. For example, in Figure1 we show a
typical stress-strain curve for fcc single crystals such as cop-
per, aluminum, etc. under single slip loading conditions.(1)
The response can be described in terms of distinct regions
(Stages), each having a corresponding unique behavior. In-
deed, the slopes of the stress-strain curves (the hardening
rate) in each linear region (Stage I and II) are “universal”
factors of the shear modulusµ. The general features of
the dislocation microstructures in each stage have also been
characterized.(2–4) The dislocation patterns are not ordered,
but show evidence of both randomness and heterogeneity.

The development of scaling relations provides a useful approach to describing systems with
multiscale properties. As an example, consider the deformation offcc materials. At high enough
strain, a cellular structure develops, in which regions with low dislocation density are surrounded
by relatively thin, high-density, walls. A standard approach for characterizing such structures is to
analyze theirfractal characteristics. Fractal systems are self-similar; structures at one scale appear
the same (at least in a statistical sense) as structures at other scales. Thus, they can be characterized
by correlation functions in the form of power laws.

A number of studies have been undertaken to determine whether dislocation patterns are, in-
deed, fractal, starting with detailed computer simulations that yielded fractal dislocation patterns.(5)
Hahner and coworkers (6) later characterized experimental dislocation structures under large de-
formation and found similar fractal behavior. Szekeley et al.(4) found a strong correlation between
the fractal dimension and the relative dislocation density variance described above. Zaiser et al.
recently analyzed the surface morphology of metals after plastic deformation over a range of scales
and found that the results could be understood in terms of a fractal distribution of plastic strain
within the deformed samples.(7)

To this point, we have discussed the static properties of dislocations in strain hardening. An-
other important characterization of the dislocation response measures the inherently stochastic na-
ture of the dislocationmotion. Crystalline materials subjected to an external stress display bursts of
activity owing to nucleation and motion of dislocations.(8–11) Sudden local changes during plas-
tic deformation generate acoustic emission waves that reveal the intermittent and jerky character
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of dislocation motion. Acoustic emission experiments on single crystals of ice under viscoplastic
deformation (creep) show that the probability density function of the acoustic emission intensity,
P(A), follows a power law distributionP(A) ∼ A−σ with an exponentσ ∼ 1.6−2.0 (12). Self-
similarity in dislocation avalanches was also observed spatially, that is, the probability of two
avalanches being separated by a distance less thanr is given byC(r)∼ rD with D = 2.5±0.1.(13)
Although many acoustic emission measurements have been reported, only qualitative descriptions
of the relation with plastic deformation have be made. Recently, a direct measurement of intermit-
tent behavior in dislocation flow has been measured in single crystals of Ni, yielding power-law
scaling with an exponentσ = 1.60±0.02.(14)

One question that arises from the avalanche behavior is whether dislocation response exhibits
self-organized criticality.(10; 12; 15) The notion of self-organized criticality (SOC) was intro-
duced by Bak et al.(16) to explain systems that organize themselves into a (stationary) critical state
in which a minor event can start a chain reaction that can have an effect over a large scale. The crit-
ical state is characterized by correlation functions that follow power laws.(17) The importance of
SOC theory arises from its ability to explain a wide set of diverse, and seemingly unrelated phenom-
ena, such as earthquakes, fracture, dynamics of magnetic domains, etc.(18) There is no rigorous
definition or mathematical formalism of self-organized critical behavior; SOC is a phenomenolog-
ical definition. It can be characterized by (i) power law distributions without any apparent tuning;
(ii) the process connected with the external driving of the system needs to be much slower than
the internal relaxation processes; (iii) the presence of marginally stable states (Baket al (16) view
marginally stable states as those characterized by the lack of any typical length or time scale),
related to systems at a critical point); and (iv) a very large number of interacting entities.(19) If
dislocations are self-organized critical systems, then we can bring to bear on deformation another
important type of scaling and analysis. A brief description of SOC in deformation has recently
been published.(20)

Over the past fifty years, numerous models have been introduced to try to describe the complex
patterning and response in systems of dislocations, including a number of stochastic theories that
attempt to interpret the process of pattern formation during the Stage II/III transition (6; 21–23).
In addition to these more heuristic models, there has been an increasing use of direct two- and
three-dimensional simulations of the evolving dislocation microstructures, employing the disloca-
tion dynamics technique, in which the dislocations are the simulated entities and their movement
is tracked during the simulation(11; 24–28). The three-dimensional simulations are very expensive
computationally, limiting the maximum stress, and the consequent dislocation density, that can be
applied to the sample. Because of these limitations, direct three-dimensional dislocation simula-
tions of strain hardening (across the range of stress and strain of interest) are not yet feasible.

The challenge is to find an approach to reduce the large number of degrees of freedom asso-
ciated with typical dislocation densities to those needed to describe deformation. In other words,
we need to coarse grain or homogenize the variables. One of the biggest challenges in the devel-
opment of a coarse-grained theory is the presence of multiple scales. Detailed simulations (in two
dimensions) show the development of a strong local order in systems of dislocations on the order
of tenths of microns.(25; 29; 30) Yet we know there are much bigger scales that matter in real
systems. For example, dislocation cell sizes in Stage III hardenedfcc metals have diameters in the
many tens of microns range.(4) The incorporation of both scales in a self-consistent way presents
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a huge theoretical and computational challenge that has yet to be tackled.

In this paper, we will briefly outline our coarse-graining approach based on extensions to
the continuous theory of dislocations(31; 32), discussing limitations in our approach and what
questions remain. (We note that two of us recently summarized current work on coarse-graining
strategies for dislocations(33)) We then will discuss how we employ simulations to address key
issues in the scaling of variables as a way to link phenomena at different length and time scales.

2. Coarse-Grained Description of Dislocation Energetics:

Figure 2: Averaging to
form dislocation density
tensor.

We base our coarse-graining strategy on continuous dislocation
theory,(34) which follows from the introduction of a coarse-graining
volumeΩ over which the dislocation density is averaged, as shown
in Figure2. The dislocation density is a tensor field defined at~r with
componentsρki(~r), wherek indicates the component of the line direc-
tion andi indicates the component of the Burgers vector. The exact
meaning of this averaging prescription is, however, unclear and it is
not obvious at what scales a continuum theory should hold.(34)

The energy of a system of dislocations as a function of the dislo-
cation density tensor is(35)

EI =
µ

16π

∫ ∫
εipl ε jmnR,mp(~r,~r ′)

{
ρ jl (~r)ρin(~r ′)+δi j ρkl(~r)ρkn(~r ′)+

2ν

1−ν
ρil (~r)ρ jn(~r ′)

}
d~rd~r ′ ,

(2.1)
where the integrals are over the entire system,δi j is the Kronecker delta,εi jk is the Levi-Civita
tensor, and repeated indices are summed.R,mp = ∂ 2|~r ′−~r |/∂xm∂xp.

While Equation (2.1) is in principle correct for continuous densities, practical applications
require averaging volumesΩ that are finite. Corrections to the Kosevich form in Equation (2.1)
associated with a finite averaging volume can be obtained by including higher-order moments of
the dislocation density tensor in a multipolar expansion.(31) We define a set of moment densities
of the distribution of loops in a volumeΩ, where the first two moments are

ρ
(Ω)
l j =

1
Ω

n

∑
q=1

b(q)
j

∮
C(q),Ω

dl(q)
l , ρ

(Ω)
l j α =

1
Ω

n

∑
q=1

b(q)
j

∮
C(q),Ω

r(q)
α dl(q)

l , ... (2.2)

where the first equation is the volume-averaged dislocation density tensor (the Nye tensor), the
second is the dislocation dipole density tensor, and so on.ρ

(Ω)
i j does not necessarily have the same

properties as the Kröner continuous tensor, except in the limit of differential averaging volumes.
Inclusion of terms that depend on the local dipole are equivalent to gradient corrections to the
Kosevich form and form a natural link with strain-gradient plasticity. These expressions can be
used as a basis for a continuous dislocation theory with local structure by including the dipole (and
higher) dislocation moment tensors as descriptors. Numerical studies employing three-dimensional
dislocation dynamics simulations have shown that the multipole expansion converges quickly and
provides an accurate way to incorporate the effects of dislocation substructures.(31)
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While the general approach outlined here provides a useful way to describe coarse-grained
energetics, it requires, but does not include, a detailed picture of local order and energetics. Com-
plicating that requirement is the great divergence between local and large-scale structures, making
the choice of an optimal coarse-graining length uncertain. We take the view that we will take a
coarse-graining volumeΩ that is large relative to local order yet small relative to the microstruc-
tural order. Given that view, we need to add to the method a description of the local ordering as
well as the dynamics of that ordering. As a first step in understanding these issues, we employ a
series of simple two-dimensional models.

3. Phase-Field Modeling of Structural and Dynamic Scaling

While we would like to employ fully-three-dimensional approaches in this work, the questions
are complex enough that current three-dimensional methodologies are not practical; we cannot
reach the system sizes or strain levels of interest. Thus, we restrict ourselves to two-dimensional
simulations.

3.1 The Phase-Field Method

Figure 3: Schematic view of the current model, show-
ing dislocations on a slip plane interacting with dislo-
cations from other slip systems crossing their plane.

Our model for the complex three
dimensional microstructure is a simple
one.(36; 37) We consider a system of dis-
locations moving on a single slip plane
through a random array of forest disloca-
tions under the action of an applied shear
stress. The model is thus two-dimensional,
with three dimensionality included in an ap-
proximate way by considering dislocations
on other slip systems (theforest disloca-
tions) as point obstacles to motion within
the plane, ignoring all other interactions.
We show a schematic view of the model
system in Figure3. While assuming a
two-dimensional model is a great simplifi-
cation of a complex three-dimensional system, the predictions from the model closely match
experiment.(36) We note that the assumption of point obstacles to represent the interaction with
forest dislocations is a simplification and that finite-sized particles might provide a better descrip-
tion of those interactions.(38; 39)

Our basic approach is to develop an expression for the energetics of the system in terms of
an order parameter that defines the local displacements in the system. This approach is in contrast
to other methods, in which the dislocations are the key descriptors of the system. The approaches
are roughly equivalent, however, in that there is a direct relationship between the displacements
and the dislocation density, as will be discussed further below. The essential difference from other
methods is that this approach is a continuous description; we do not identify individual, discrete,
dislocations. We note that in the previous work,(36; 37; 40) this approach was referred to as a
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phase-field method, largely because, as in more traditional phase-field calculations, we proceed by
defining the energy of the system as a functional of some order parameter and then find the driving
force by taking the functional derivative of that energy with respect to the order parameter.

The method is based on an energy expression written in terms of the plastic distortion tensor,
β

p
mk(x,y), which is then employed as the variational parameter.(40) The elastic energy in terms of

β
p
mk(x,y) is found, from which the minimum of energy and value ofβ

p
mk(x,y) at the minimum is

determined. The dislocation density tensorαi j (x,y) is determined fromβ
p
mk(x,y) with the relation

α jm = εi jkβ
p
mk, j ., (3.1)

whereβ
p
mk, j = ∂β

p
mk/∂x j .

The model assumes a set of point obstacles that represent the forest dislocations. (Terms in the
energy account for dissipation when a dislocation crosses an obstacle.) An initial distribution of
obstacles is assumed and then new obstacles could be added, depending on the application. As the
stress increases, we measure the accumulated displacement, from which we determine the strain
and dislocation content. More details are given elsewhere.(36; 37)

3.2 Fractal Scaling of Dislocation Structures

0 . 0 0 . 5 1 . 0 1 . 5 2 . 01 . 8
2 . 0
2 . 2
2 . 4
2 . 6
2 . 8
3 . 0

 

 

 

τ[10−3µ]

D

Figure 4: Fractal dimensionD vs. applied
stress. Full circles: calculated (36); Open cir-
cles: experimental (6).

A measure of dislocation structure arises from
the cell-size distribution having been shown (in both
simulations and experiment) to be fractal (5; 6). The
indicator of a fractal system is that its descriptors can
be described with power-law scaling, which arises
from fractal structures being self-similar. In systems
of dislocations, a convenient measure of structure is
the cell size, with the probability of having a cell of
sizeA being given by

n(A) = CA−D , (3.2)

whereD is the fractal exponent andD′ = D−1 is the
fractal dimension. Since the fractal dimension in our
model (as well as in experiments) is determined from
a two-dimensional dislocation array, the 3D fractal
dimension is obtained asD′ + 1 = D. We note that the experimental methodology for measuring
cell size differs from our procedure. In the experimental studies, the walls themselves are counted,
ignoring the dislocations in the cell interiors (which are not necessarily resolved in the experiment).
However, if the dislocation structures are truly self-similar, as they must be if they follow Equation
(3.2), then the distributions are the same regardless of the scale. We examined the development
of such structures and found (in agreement with previous experiments) that the distribution of
cell sizes is fractal, i.e., the structures are self-similar.(36) The number of cells of sizeA follows
the power lawN(A) = CA−D, whereD is the fractal dimension.(36) The calculated relationship
betweenD and applied stress agreed with experimental values, as shown in Figure4. This relation
holds over many orders in size; thus, once the distribution is known at one cell size, we have a
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measure of the structure at many others. One important issue that yet remains is to determine the
scales at which the scaling law is valid.

3.3 Intermittent Flow in Dislocation Response

1 0 0 1 0 1 1 0 2 1 0 3

1 0 1

1 0 2

1 0 3

1 0 4

N(
A)

A [ 1 0 0 b 2 ]

 τ = 0.44 10−4  µ
 τ = 1.19 10−4  µ

Figure 5: Probability distributionN(A) at ap-
plied stressτ = 0.44×10−4µ andτ = 1.19×
10−4µ

We also employed the phase-field model to ex-
amine the intermittent kinematic behavior of the
dislocation response.(37) Dislocations propagate
by means of avalanches; local stresses build up un-
til a dislocation breaks free and starts an avalanche
of motion of other dislocations. In our approach,
dislocation loops are generated, with the net defor-
mation proportional to the area of the loops. We
found that the number of loops of areaA gener-
ated in an avalanche follows a power law inA,
N(A) ∼ A−σ , as shown in Figure5. We deter-
mined a power law exponent ofσ = 1.8± 0.1,
though we note that we employed a linear binning
approach, which has been shown to be somewhat
inaccurate.(17) Subsequent to our paper, a direct
measurement of dislocation avalanches in single
crystals was made and an experimental value of
σ = 1.60± 0.02 was found.(14) The latter value
is in agreement with acoustic emission experiments(12) and a recent theoretical analysis.(41) The
importance of these results is that they show that dislocations form a self-organized critical sys-
tem, which puts them in the same class as earthquakes, fracture, etc. We can thus bring to bear on
deformation another important type of scaling and analysis.

We thus have shown that dislocation structure and kinematics can be characterized by power-
law relations over a very wide range of conditions. These scaling relations provide critical informa-
tion that will form part of the basis of the development of the coarse-grained theory. These scaling
relations do not, however, inform us about the details of local structural development and the bal-
ance between the structure and the noise inherent in these stochastic systems. For information
about those details, we turned to an even simpler model.

4. Energetics and Noise in Dislocation Patterning

The ordering of dislocations into walls and other local structures takes place while the system
is far from thermal equilibrium and in the presence of very large fluctuations, or noise, in the rele-
vant variables. Noise in systems of dislocations is quite unlike the more familiar noise that arises
from thermal fluctuations. In dislocations, the noise fluctuations do not constitute an independent
variable in the problem, but are self consistent with the evolving configuration. In the parlance of
stochastic dynamics, dislocation systems are characterized by multiplicative noise (i.e., the noise
is a function of the evolving variable) rather than the additive noise found in a thermally-driven
system. Employing a simple two-dimensional simulation of like-signed, parallel, edge dislocations
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on a lattice, we developed a set of quantitative functions for the energetic driving force for order-
ing and the resistive force owing to the noise, which exactly balance one another at the relaxed
state.(42) We identified scaling relations as a function of the (scalar) dislocation density that show
that the system is scale invariant, with power law dependencies of the macro-variables (energy,
structure, noise) on the number of relaxing dislocations.

More specifically, we estimate the noise by determining the standard deviation of the stress at
each lattice point of a slip plane, which is a measure of the fluctuations in the forces acting on a
dislocation as it moves through the system. We refer to this quantity asR, or simply the “noise."
By calculating the noise over many simulations and many dislocation densities, we find that the
noise is characterized by the relation

R ∼ ρ
1/2 , (4.1)

whereρ is the dislocation density, in agreement with assumptions made in an earlier work.(6)
The degree of order is derived from the standard pair correlation function for a configuration,

C (x,y), which is the probability that a second dislocation will be found at(x,y), given that the
first dislocation is at(x,y) = (0,0).(25; 29) There is a directional dependence toC , so thatC does
not depend simply on the scalar distance to the field dislocation. We define the differential wall
correlation functionq(x) as the sum ofC over the direction vertical to the slip plane,

q(x) = ∑
y

′
C (x,y) . (4.2)

The sum is over the lattice sites in they-direction, except the site at the reference dislocation, and
q(x) is normalized to the total number of dislocation pairs. We define an additional correlation
function, ξw, to serve as the basis for our analysis, which we will call the total wall correlation
function, or just the wall correlation function. This function represents the total excess fraction of
pairs that coagulate in a central wall as the system relaxes for a given value ofρ. That is, for a
given ρ, the wall correlation function is defined as the sum overx of q(x) for each relaxed state
for which q(x) > q(random), whereq(random) is the differential wall correlation function for a
completely random distribution of dislocations,

ξw(t,N) = ∑
q(x)>q(random)

q(x) . (4.3)

This function,ξw, is averaged over many simulations. More details are given elsewhere.(42) Anal-
ysis of the results shows

ξw ∼ ρ
α , (4.4)

whereα = −0.3606± .0140, i.e., the walls become smaller as the density increases. The order is
related to the noise by

ξw ∼R−0.734. (4.5)

Thus we see that the higher degree of noise, the smaller the amount of order, which is in line with
expectations.

Finally, we defined a driving force for formation of order for the system at fixedρ as

Fξw
(ρ) =− ∂E(ρ)

∂ξw(ρ)

∣∣∣∣
ρ

, (4.6)
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whereE is the interaction energy of the system. (Complete details are given in (42).) The energy
per dislocatione(ρ) is found to scale ase ∝ −R1.97. We find (at a time after the initial rapid
relaxation)

F ∼ ρ
0.941

∼R1.88. (4.7)

We thus demonstrated a simple linear relation between the ensemble driving force for order
formation,F , and (approximately) the square of the noise,R, showing explicitly the balance at
the relaxed state between the driving force for ordered wall formation and the frustration resistance,
or noise. Beyond this central result, we find that the fully-relaxed ensemble variables are all power
functions of the number of dislocations (i.e., dislocation density) in the system. Consequently,
the set of ensemble variables are thus expressible as direct power functions of each other. These
relations enable us to characterize the local ordering behavior of the complex dislocation system in
terms of a reduced set of macrovariables.

5. Summary and Conclusions

We now have many components of a coarse-grained theory of dislocations, with a formalism
for spatial coarse graining and scaling relations that will guide future developments. Specifically,
we have found (1) the energy of a system of dislocations as function of local dislocation den-
sities/dipoles/..., (2) scaling relations to inform on structures at scales within local volumes, (3)
scaling relations for ordering (local correlations) as function of density, (4) scaling relations that
inform us on the energetics of local structures (not completely discussed in this paper), and (5)
scaling relations that inform us about intermittent flow. There are, however, many critical, yet
unresolved, issues critical for the development of a coarse-grained theory, including the develop-
ment of descriptions of order in three dimensions, descriptions of the dynamics local order, and
the dynamics of the coarse-grained variables. Progress has been made in the latter case, with work
by Rickman and Viñals(43), who developed an equation for the time-dependence of the disloca-
tion density tensor based on the dislocation flux described by a Ginzburg-Landau equation, and El
Azab(44), who has developed a kinetic theory of dislocations.

While much remains to be done, we are accumulating what we need for developing a theory of
dislocations that will enable predictions of dislocation response without resolving all dislocations.
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