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ABSTRACT 

 
In this paper, an artificial neural network (ANN) model has been suggested to predict 
the constitutive flow behavior of a 15Cr-15Ni-2.2Mo-Ti modified austenitic stainless 
steel under hot deformation. Hot compression tests in the temperature range 850°C-
1250°C and strain rate range 10-3-102 s-1 were carried out. These tests provided the 
required data for training the neural network and for subsequent testing. The inputs of 
the neural network are strain, log strain rate and temperature while flow stress is 
obtained as output. A three layer feed-forward network with ten neurons in a single 
hidden layer and back-propagation learning algorithm has been employed. A very good 
correlation between experimental and predicted result has been obtained. The effect of 
temperature and strain rate on flow behavior has been simulated employing the ANN 
model. The results have been found to be consistent with the metallurgical trend. 
Finally, a monte carlo analiysis has been carried out to find out the noise sensitivity of 
the developed model.  
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1. Introduction 

Austenitic stainless steels, primarily AISI 316 and its modifications, have been selected 
world-wide as prime candidate materials for fuel cladding and sub-assembly wrapper tubes of 
fast breeder reactors. For the 500 MWe fast breeder reactor project (PFBR) in India, a 15Cr-
15Ni-2.2Mo-0.3Ti austenitic stainless steel has been developed indigenously. This conforms to 
ASTM A771 UNS 38660 and is commonly referred to as alloy D9. This is a candidate material 
for in-core applications as fuel cladding tube and hexagonal subassembly wrapper. Alloy D9 
has to be processed through various thermo-mechanical treatment before it is fabricated into 
final component. However, the high temperature deformation behaviour of alloy D9 is 
associated with various complicated  metallurgical phenomena like work hardening (WH), 
dynamic recovery (DRV), dynamic recrystallization (DRX), flow instabilities etc. and thereby 
complex in nature. Therefore, understanding of the constitutive flow behavior is required in 
order to avoid flow instabilities in the deforming materials and to get a defect free end product. 

In past, various internal state variables phenomenological models [1-3] or empirical/semi-
empirical equations [4-6] have been constructed to predict the constitutive flow behavior of 
materials during hot working. Although these approach attempt to represent the non-linear 
relations between flow stress (σ), strain rate (ε& ), strain (ε) and temperature (T), they are usually 
restricted to some limited processing domain where a specific deformation mechanism operates 
and break down across deformation mechanism domains. Therefore, separate equations and/or 
various equation parameters are needed to represent the complete hot deformation behavior. 

Artificial neural network (ANN), in this respect, provides an efficient alternative. ANN  
utilities a statistical approch to modeling and is one of the most powerful modern modeling 
techniques. The basic advantage of ANN is that it does not need any mathematical model; an 
ANN learns from examples and recognizes patterns in a series of input and output values 
without any prior assumptions about their nature and interrelations. Since ANN does not 
explicitly embed the physical knowledge of the deformation mechanism, it has the ability to 
predict the flow stress value across the deformation domains. Therefore, a single ANN has the 
inherent capabilities to describe the complete hot deformation behavior. In this study, therefore, 
an ANN model is suggested to predict the constitutive flow behavior of alloy D9 during hot 
deformation. 

2. Experimental 

The chemical composition of alloy D9 used in this investigation is given in Table I. The 
thermomechanical treatments employed for this material are the same as reported elsewhere [7]. 
Compression specimens of 15 mm height and 10 mm diameter were machined for testing. 
Isothermal hot compression tests were conducted using a computer controlled servohydraulic 
testing machine (DARTEC, Stourbridge, UK) with a maximum load capacity of 100 kN. The 
testing temperatures ranged from 850-1250oC at an interval of 50oC and at constant true strain 
rates 0.001, 0.01, 0.1, 1, 10 and 100 s-1. The specimens were deformed to half the height in each 
case to impose a true strain of 0.7. The load-stroke data obtained in compression were processed 
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to obtain true stress-true plastic strain using standard equations. Table II gives the statistical 
analysis of the flow stress data as a function of strain, strain rate and temperature. 

Table I: Chemical compositions (in wt. %) of alloy D9 

C Mn Si S P Cr Ni Mo Ti B N 
0.052 1.509 0.505 0.002 0.011 15.05 15.07 2.25 0.3 0.001 0.006 

 
Table I1: Statistical analysis of input and output data 

Variables Maximum Minimum Stand. Dev.  Average 
Strain (%) 0.5 0.1 0.142 0.3 

Strain rate (s-1) 100 0.001 40.10 18.52 
Temperature (oC) 1250 850 129.34 1050 
Flow stress (MPa) 446.1 17.6 107.01 178.56 

 
3. Model overview  

ANN is a highly simplified model of the structure of a biological network. The 
fundamental unit or building block of ANN is the processing element, also called an artificial 
neuron or simply a neuron. Some neurons interact with the real world to receive input, and some 
provide the real world with the output. Rest of the neurons remains hidden. Neurons are 
connected to each other by synapses; associated with each synapse is a weight factor. More 
details regarding ANN modeling can be found elsewhere [8].    

In this study, a multilayer perceptron (MLP) based feed-forward ANN has been used since 
multilayer network has greater representational power for dealing with highly non-linear, 
strongly coupled, multivariable system [9]. A general scheme of the present ANN model is 
given in Fig.1. The inputs of the model are strain (ε), log strain rate ( ε&log ) and temperature 

(T ). The output of the model is flow stress (σ). Instead of ε& , ε&log  has been chosen since σ  

usually varies with ε&log  on a physical basis [10].    
A total of 270 input/output data points have been employed in the present study. All 

datasets (ε, ε&log , T and σ ) were scaled between 0 to 1 in order to ensure that each variables 
lie in the same range during training and testing. Theses datasets were then divided into two 
parts. 25% of the datasets were randomly removed and remaining 75% were used for training. 
The removed 25% datasets were subsequently used for testing. After repeated trials, it was 
found that a network with one hidden layer consisting of 10 hidden neurons produces best 
performances and thereby considered as the optimal configuration for the present problem. This 
observation reaffirms the universal approximation theorem that a single layer of non-linear 
hidden units is sufficient to approximate any continuous function. A logistic sigmoid function 
expressed as 1)1( −−+= inputeOutput  was employed as the activation function; the learning is 
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based on gradient descent algorithm and hence requires the activation function to be 
differentiable. 
 

 

 

 

 

 

Figure 1: Schematic of the ANN for flow stress prediction in alloy D9 

 

4. Learning algorithm 

Back Propagation (BP) learning algorithm has been used to train the model. The basic idea 
of BP learning algorithm consists of repeated application of chain rule to compute the influence 
of individual weight in the network with respect to error energy nE : 
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In the above, n
jiw is the weight from neuron i to neuron j at iteration n; n

je  refers to the error 

signal at the output of neuron j at iteration n; and n
jv  is the weighted sum of all synaptic inputs 

of neuron j at iteration n. Once the partial derivative for each weight is known, error energy is 
minimized through a gradient descent: 
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where α  is learning rate. 
The convergence criterion for the network is determined by the average root-mean-square 

(RMS) error between the desired and predicted output values, 
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where RMSE  is the average root-mean-square, N is the number of training or testing data and p 

is the number of variable in the output. In all the calculations reported in this paper, a 
convergence criterion of 1% RMS error has been set. But invariably it is found that the network 
stabilizes before this criterion is met. 

5. Results and Discussion 

The sailent features of the model is shown in Table III. The predictability of the network 
is shown in the form of linear regression between the experimental data and corresponding 
predicted result for both the training and test datasets (Fig.2 and Fig.3 respectively). The results 
show that a very good correlation between experimental and predicted data has been obtained. 
Predicted result could efficiently track the experimented data over the full range of datasets.   
 

Table III: Sailent features of the ANN model to predict the constitutive behavior of alloy D9  

  Algorithm Learning rate Weight initialn   Iterations RMS Training 
    Error (%) 

R 
(Training)

BP 0.1 1.0±     10,000 6.01    0.997 
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Figure 2: Correlation between experimental and predicted training data for flow stress 
prediction in alloy D9 
 

The performance of the model is further demonstrated by statistical analysis of the error 
of neural network predictions for both the training and testing data. Neural network predictions 
are compared with the corresponding experimental data and subsequently the relative errors are 
calculated as below: 
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                    Relative Error = %100×⎟
⎠
⎞

⎜
⎝
⎛ −

E
PE

,                                   (4) 

where E is the experimental output value and P is the predicted value obtained from the neural 
network model. 
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Figure 3: Correlation between experimental and predicted test data for flow stress prediction in 
alloy D9 
 

It has been observed that the error shows a Gaussian distribution with zero mean. For 
more than 90% training and test data set, the error of prediction is found to be within %.10±  
This signifies that main source of prediction error is the noise in the experimental data which 
has been fed to train and test the ANN model and hence can not be wholly attributed to the 
predictability of the neural network model. The small noise in flow stress measurements can 
readily arises due to unavoidable variations in temperature, strain rate and interfacial friction 
resistance [11]. 

It should be kept in mind that a robust ANN model can be efficiently developed by 
proper selection of input and output variables, adequete input informations and comprehensive 
database. However, the amounts of database or information required depend on the complexity 
of the problem being modeled and thereby not deterministic. For example, in the present 
problem, a set of 270 input/output data points have been found to yield a very good correlation 
in a wide ragne of deforming conditions. The same problem, also, can be modeled with lesser 
number of data points. However, as ANN is a non-linear statistical modeling technique, the 
cofidence limit and therby prediction accuracy will go down with the lesser number of data 
density.   
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It is a matter of debate among the researcher whether ANN model should be used for 
extrapolation or not. Since ANN purely learns from examples, the predictibility of model would 
definitely be high with in the training domain. However, in our recent study, we have shown 
that ANN can also efficiently extrapolate as long as underlying mechanisms do not change for 
the extrapolated data [12]. On the other hand,  prediction was found to be detoriated when there 
is changes in the underlying mechanism in the extrapolated regime. Therefore, it is concluded 
that extrapolation of ANN model should be carried out with great caution.    

5.1 Effect of temperature and strain rate 

The effect of temperature and strain rate on flow behavior of alloy D9 has been 
simulated employing the developed ANN model. The result has been shown in Fig.4 and Fig.5 
respectively. As can be seen from the figures, simulated curve can track well the experimented 
data. With increase of temperature, flow stress decreases in both the highest and lowest strain 
rate (Fig.4). Similar kind of trends have been obtained in other strain rates and therefore not 
iterated. The predicted dependence on temperature is in accordance with the relation between 
flow stress and temperature. As the temperature increaes, the available thermal activation 
energy will be more which eventually leads to higher extent of dynamic softening. This 
dynamic softening may arise either from DRV or DRX. On the other hand, with increase of 
strain rate flow stress increases because of higher extent of work hardening (Fig.5). The 
simulated results are therefore consistent with what is expected from fundamental theory of hot 
deformation. These results also suggested that our model could efficiently predict the flow 
behavior accross the deformation mechanism domain (WH, DRX, DRV or flow localization) 
and therefore capable to predict the complete hot deformation behavior of alloy D9.  
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Figure 4: Effect of temperature on constitutive flow behavior of alloy D9 at 0.5 strain 
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Figure 5: Effect of strain rate on constitutive flow behavior of alloy D9 at 0.5 strain 
 
5.2 Sensitivity analysis 

To investigate how sensitive ANN is to fluctuations in the input data, the following 
Monte Carlo analysis was carried out. We select nominal values of the three input 

parameters: CT °= 925ˆ ; 3.0ˆ =ε ; 100ˆ =ε& s-1. We assume T, ε  and ε&  to be Gaussian random 

variables with mean equal to T̂ , ε̂ , ε̂&  and 5% relative standard deviation. T, ε  and ε&  is 
sampled independently and randomly from their respective distribution and fed as inputs to the 
ANN which returns flow stress (σ ) as output. This exercise was carried out 1000 times. The 
mean and standard deviation of σ is found to be 369.29 MPa and 5.58% respectively.σ  
Corresponds to nominal value is 371.47 MPa which is well within the fluctuations. From the 
analysis, therefore, it could be concluded that the fluctuations in σ  (5.58%) is approximately 
the same as fluctuation in the input parameters (5%).  

6. Conclusions    

An artificial neural network model has been constructed for the prediction of flow stress 
of 15Cr-15Ni-2.2Mo-Ti modified austenitic stainless steel (alloy D9) using experimental data 
from hot compression testing. Various network configurations were tried and an ANN model 
with one hidden layer and ten hidden neurons was found to be optimal configuration when 
strain, strain rate and temperature are input parameter. It has been shown that the ANN model is 
capable to predict the complete flow behavior of alloy D9 with sufficient accuracy. This can be 
considered as major potential of the developed ANN model as compared to phenomenologcal or 
traditional regression analysis whcih can be apllied to a limited processing domain.  

The sensitivity of ANN on the fluctuations in input data has also been investigated. It 
has been found that fluctuation in the output parameter is approximately same as that of inputs.     
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The outcomes of this model give us enough confidence to employ ANN in predicting 
flow stress during high temperature deformation. This implies that experimental studies can be 
reduced significantly which would save considerably money and man power required for 
extensive experimentation.  
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