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The set of non-linear equations describing the Standard Model kinematics of the top quark an-

tiqark production system in the dilepton decay channel has at most a four-fold ambiguity due to

two not fully reconstructed neutrinos. Its most precise and robust solution is of major importance

for measurements of top quark properties like the top quark mass and t t̄ spin correlations. Simple

algebraic operations allow to transform the non-linear equations into a system of two polynomial

equations with two unknowns. These two polynomials of multidegree eight can in turn be an-

alytically reduced to one polynomial with one unknown by means of resultants. The obtained

univariate polynomial is of degree sixteen and the coefficients are free of any singularity. The

number of its real solutions is determined analytically by means of Sturm’s theorem, which is as

well used to isolate each real solution into a unique pairwise disjoint interval. The solutions are

polished by seeking the sign change of the polynomial in a given interval through binary brack-

eting. Further a new Ansatz - exploiting an accidental cancelation in the process of transforming

the equations - is presented. It permits to transform the initial system of equations into two poly-

nomial equations with two unknowns. These two polynomials of multidegree two can be reduced

to one univariate polynomial of degree four by means of resultants. The obtained quartic equation

can be solved analytically. The analytical solution has singularities which can be circumvented

by the algebraic approach described above.
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Algebraic Approach to solve tt̄ dilepton equations

1. Introduction

In 1992, Dalitz and Goldstein published a numerical method based on geometrical considerations
to solve the system of equations describing the kinematics of the t t̄ decay in the dilepton channel [0]
[0]. In 2004 an approximation of the system of equations - assuming that the transverse momentum
of the tt̄ system can be neglected - has been solved analytically [0] by means of computer alge-
bra software such as Maple [0]. Meanwhile the transverse momentum constraint has been omitted
while the solution is still derived by means of computer algebra and its accuracy does not reach
real precision [0]. Recently, the system of equations could be solved algebraically to real precision
free of any singularity [0] based on Sturm’s theorem. This algebraic approach is discussed in detail
here. Further the analytical solution based on a new Ansatz which minimizes the amount of inter-
mediate steps to derive the solution is presented [0]. This approach makes the need of computer
algebra superfluous. In addition it provides more transparency and control over singularities which
are intrinsic to the analytical solution. Irreducible singularities can be circumvented in exploiting
the analytical Ansatz of the algebraic approach [0]. The accuracy achieved is - as already in the al-
gebraic approach - of real precision. Important improvements in terms of robustness, code volume
and time consumption with respect to the algebraic approach make this method more convenient
for applications in practice. Other solution methods can compare their performance to the algebraic
reference methods described here. It should be mentioned that different approachs leading to an-
alytical solutions, without giving a complete algebraic derivation and without rigorous discussion
of reducible and irreducible singularities exist in the literature [0] [0].

In the next section the system of t t̄ dilepton equations is introduced, followed by a description
of the algebraic solution exploiting Sturm’s theorem and its implementation as algorithm. Subse-
quently the derivation of the analytical solution is explained including a rigorous discussion of the
reducible and irreducible singularities. Afterwards the performance of the two methods which is
consistent with each other is elaborated.

2. tt̄ dilepton kinematics

The system of equations describing the kinematics of t t̄ dilepton events can be expressed by the
two linear and six non linear equations

Ex
���

pνx � pν̄x

Ey
���

pνy � pν̄y

E2
ν
�

p2
νx � p2

νy � p2
νz

E2
ν̄
�

p2
ν̄x � p2

ν̄y � p2
ν̄z

m2
W � ��� E � � � Eν 	 2 
 � p � �x � pνx 	 2
 � p � �y � pνy 	 2 
 � p � �z � pνz 	 2

m2
W � ��� E � � � Eν̄ 	 2 
 � p � �x � pν̄x 	 2 (2.1)


 � p � �y � pν̄y 	 2 
 � p � �z � pν̄z 	 2
m2

t
���

Eb � E � � � Eν 	 2 
 � pbx � p � �x � pνx 	 2
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 � pby � p � �y � pνy 	 2 
 � pbz � p � �z � pνz 	 2
m2

t̄

���
Eb̄ � E � � � Eν̄ 	 2 
 � pb̄x

p � �x � pν̄x 	 2
 � pb̄y � p � �y � pν̄y 	 2 
 � pb̄z � p � �z � pν̄z 	 2 �

The z-axis is here assumed to be parallel orientated to the beam axis while the x- and y-coordinates
span the transverse plane. The first two equations relate the projection of the missing transverse
energy onto one of the transverse axes (x or y) to the sum of the neutrino and antineutrino momen-
tum components belonging to the same projection. The next two equations relate the energy of
the neutrino and antineutrino, which are assumed to be massless in good approximation, with their
momenta. Finally four non linear equations describe the W boson and top quark (antiquark) mass
constraints by relating the invariant masses to the energy and momenta of their decay particles via
relativistic 4-vector arithmetics.

3. Algebraic solution

This system of equations can be reduced to four equations by simply substituting in the last four
equations the neutrino and antineutrino energies by the third and fourth equations and substituting
the antineutrino transverse momenta by the first two equations solved to these momenta. In this way
the four unknowns pνx , pνy , pνz and pν̄z are left. One pair of equations, describing the t � bW

� �
b

� �
ν � parton branch of the event, depends on pνz while the other pair of equations, describing the

t̄ � b̄W � � b̄
� � ν̄ � parton branch of the event, depends on pν̄z . By means of ordinary algebraic

operations both pairs can be solved to the longitudinal neutrino and antineutrino momentum pνz

and pν̄z respectively. The equations can be written in the form

pνz

�
a1 �

�
a2

1 � a2

(3.1)

pνz

�
b1 �

�
b2

1 � b2

for the top quark parton branch and

pν̄z

�
c1 �

�
c2

1 � c2

(3.2)
pν̄z

�
d1 �

�
d2

1 � d2

for the anti-top quark parton branch with the coefficients

a1
�

a11 � a12 pνx � a13 pνy (3.3)
a2
�

a21 � a22 pνx � a23 pνy � a24 p2
νx � a25 pνx pνy � a26 p2

νy

and b equivalent for the first pair of equations (3.1). For the second pair of equations (3.2) holds
analogically

c1
�

c11 � c12 pν̄x � c13 pν̄y (3.4)
c2
�

c21 � c22 pν̄x � c23 pν̄y � c24 p2
ν̄x � c25 pν̄x pν̄y � c26 p2

ν̄y

3
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and d equivalent. The explicit expressions in terms of the initial equations (2.1) are given in [0].
After equating both equations of each pair, there remain two equations with the two unknowns pνx

and pνy .
Again by means of ordinary algebraic operations the two non linear equations can be trans-

formed into two polynomials of multi-degree eight. To solve these two polynomials to pνx the
resultant with respect to the neutrino momentum pνy is computed as follows. The coefficients and
monomials of the two polynomials are rewritten in such a way that they are ordered in powers of
pνy like

f
�

f1 p4
νy � f2 p3

νy � f3 p2
νy � f4 pνy � f5

(3.5)
g
�

g1 p4
νy � g2 p3

νy � g3 p2
νy � g4 pνy � g5

where f and g are polynomials of the remaining unknowns pνx , pνy and the coefficients fm, gn are
univariate polynomials of pνx . The resultant can then be obtained by computing the determinant of
the Sylvester matrix

Res
�
pνy 	 � Det

�������������
�

f1 g1

f2 f1 g2 g1

f3 f2 f1 g3 g2 g1

f4 f3 f2 f1 g4 g3 g2 g1

f5 f4 f3 f2 g5 g4 g3 g2

f5 f4 f3 g5 g4 g3

f5 f4 g5 g4

f5 g5

��������������
�
�

0 (3.6)

which is equated to zero. The omitted elements of the matrix are identical to zero. Since each
element in the matrix is a polynomial itself the evaluation is very elaborative. There are two ways
to compute the determinant in practice. The more elegant way from a programming technical point
of view is to invoke recursively a function which computes subdeterminants and consists of a very
limited number of lines. Unfortunately it turns out that this approach is too time consuming. The
other way is to let Maple [0] compute and optimize the determinant as a function of the unknown
pνx and implement it. This way the code grows orders of magnitude in size but on the other hand
the evaluation speeds up by orders of magnitude.

The resultant is a univariate polynomial of the form

0
�

h1 p16
νx � h2 p15

νx � h3 p14
νx � h4 p13

νx � h5 p12
νx � h6 p11

νx

� h7 p10
νx � h8 p9

νx � h9 p8
νx � h10 p7

νx � h11 p6
νx

(3.7)

� h12 p5
νx � h13 p4

νx � h14 p3
νx � h15 p2

νx � h16 pνx � h17

with the remaining unknown pνx . Fig. 1 shows such a polynomial for a given event. It is of
degree 16 and analytical solutions of general univariate polynomials are only known until de-
gree four. Abel’s impossibility theorem and Galois demonstrated that a univariate polynomial

4
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of degree five can in general not be solved analytically with a finite number of additions, sub-
tractions, multiplications, divisions, and root extractions [0]. Thus from here on the solutions of
the univariate polynomial (3.7) have to be obtained by different means. In principle the problem
can be reduced to an Eigenvalue problem. Unfortunately, in practice it turns out that the imple-
mentation of the Eigenvalue package in Root [0] gives only reasonable solutions for univariate
polynomials of degree 14 and below. Finally the number of solutions is obtained analytically by
applying Sturm’s theorem [0] which consists of building a sequence of univariate polynomials
h
�
pνx 	�� h � � pνx 	�� ha

�
pνx 	�� hb

�
pνx 	�� � � �

� hm
�
pνx 	 � const., where h

�

is the first derivative of the univari-
ate polynomial h with respect to pνx and the following polynomials are the remainders of a long
division of their immediate left neighbour polynomial divided by the next left neighbour polyno-
mial. The sequence ends when the last polynomial is a constant. In the case the constant vanishes,
the initial polynomial has at least one multiple real root which can be splitted by long division
through the last non constant polynomial in the Sturm sequence. In this case one solution is al-
ready known. The sequence is evaluated at two neutrino momenta pνx1 � 2

(initially at the kinematic
limits) and the difference between the number of sign changes of the evaluated sequence at the two
interval limits is determined. The obtained quantity corresponds to the number of real solutions in
the given interval.

This means that the theorem of Jacques Charles François Sturm - which he has proven in 1829
[0] - is extremely powerful since in the case of no real solutions no time needs to be spent for the
unsuccessful attempt to find one.

To reduce numerical inaccuracies, all polynomial evaluations are applied using Horner’s rule
which factors out powers of the polynomial variable pνx [0]. Further the solutions are separated
by applying Sturm’s theorem with varying interval boundaries. Once the solutions are separated in
unique pairwise disjoint intervals they are polished by binary bracketing exploiting the knowledge
about the sign change at the root in the given interval. This is possible since it is guaranteed
that there is only one single solution in a given interval per construction (Now one could turn the
way to solve a given Eigenvalue problem the other way around and use the Sturm sequence to
solve the characteristic polynomial to obtain the Eigenvalues). Once the solutions are found - most
frequently there are two but never more than four - they can be inserted in equations (3.5). Such that
these equations reduce to two univariate polynomials of degree four which in turn can be solved

(x)νp
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Figure 1: A typical univariate polynomial of degree 16 whose real roots in pνx are solutions of the initial
system of equations describing the t t̄ dilepton kinematics. The right plot shows the polynomial zoomed
around the interesting pνx range of the abscissa where two solutions are located.
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Algebraic Approach to solve tt̄ dilepton equations

analytically to pνy with a four fold ambiguity. The ambiguities can be eliminated in requiring the
roots of these two polynomials to coincide since both equations have to be satisfied simultaneously.
pν̄x and pν̄y can be simply determined with help of the first two equations in (2.1). To determine
the longitudinal neutrino and antineutrino momenta pνz and pν̄z the equations (3.1) and (3.2) can
be evaluated respectively. Again the two-fold ambiguity, here due to the square root sign, can be
resolved in requiring the solutions to coincide simultaneously for both equations of one parton
branch.

4. Analytical solution

The system of equations (2.1) can again be subdivided in two entangled sets of equations. One set
of equations, describing the t � bW

� � b
� �

ν � parton branch of the event, depends on pνz while
the other pair of equations, describing the t̄ � b̄W � � b̄

� � ν̄ � parton branch of the event, depends
on pν̄z .

The equation describing the invariance of the W boson mass can be expressed in the following
way

m2
W � � � E � � � Eν 	 2 
 ���p � � � �

pν 	 2�
E2� � � 2E � � Eν � E2

ν

 �

p � � 2 
 2
�

p � � �pν

 �

pν
2

�
m2� � � 2E � � Eν


 2
�

p � � �pν (4.1)

which can be rewritten as

Eν
� m2

W � 
 m2� � � 2
�

p � � �pν

2E � �
� (4.2)

The equation describing the invariance of the top quark mass can be transformed in the same way
leading to

Eν
� m2

t

 m2

b

 m2� � 
 2EbE � � � 2

�

pb
�

p � � � 2
���
pb � �

p � � 	 �pν

2
�
Eb � E � � 	 (4.3)

where additional terms emerge due to the fact that quantities which depended in equation (4.2)
only on the lepton depend now also on the b quark. Next the unknown Eν can be eliminated by
subtracting equation (4.3) from (4.2), leading to an equation of the form

0
�

a1 � a2 pνx � a3 pνy � a4 pνz (4.4)

where the coefficients a are constants given in [0]. This equation is linear in the three neutrino
momentum components. Since the unknown pνz does only appear in the top quark parton branch it
is mandatory to eliminate this variable with a linear independent equation of the top quark parton
branch to obtain finally together with the equations of the antitop quark branch two equations of
the two unknowns pνx and pνy .

To eliminate the unknown pνz it is straight forward to use equation (4.2) (for convenience
multiplied by the denominator 2E � � ). The neutrino energy Eν can be expressed in terms of the

6
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Algebraic Approach to solve tt̄ dilepton equations

three neutrino momenta components in substituting it with the third equation of (2.1). To obtain
a polynomial equation the squared of this equation is being considered in the following. The
terms squared in the longitudinal neutrino momentum cancel out accidentally. It is exactly this
cancellation which permits to eliminate the neutrino momentum pνz by means of the linear equation
(4.4). The resulting equation of the form

0
�

c22 � c21 pνx � c11 pνy � c21 p2
νx � c10 pνx pνy � c00 p2

νy
(4.5)

is a multivariate polynomial of multidegree two which depends only on the transverse neutrino
momenta pνx and pνy . The coefficients are again constants which can be expressed in terms of the
former derived constants a and are given in [0].

In the same way can be proceeded for the equations describing the antitop quark parton branch.
The equivalent of equation (4.4) reads

0
�

b1 � b2 pν̄x � b3 pν̄y � b4 pν̄z (4.6)

and the counter part of polynomial (4.5) can be written as

0
�

d
�

22 � d
�

21 pν̄x � d
�

11 pν̄y � d
�

21 p2
ν̄x � d

�

10 pν̄x p
�

ν̄y � d
�

00 p2
ν̄y

� (4.7)

The two equations linear in the three (anti-)neutrino momenta (4.4) and (4.6) build the minimal
Ansatz used here. In contrast the non-minimal Ansatz made in [0], [0] is based on two equations
linear in the four unknowns pν̄x , pν̄y , pν̄z , pνz .

To reduce equations (4.5) and (4.7) to two polynomial equations of two unknowns the trans-
verse antineutrino momenta of equation (4.7) can be expressed by the transverse neutrino momenta
with help of the missing transverse energy relations of the system of equations (2.1). Since these
relations are linear in the neutrino and antineutrino momenta the substitution leads again to a poly-
nomial of the form

0
�

d22 � d21 pνx � d11 pνy � d21 p2
νx � d10 pνx pνy � d00 p2

νy
(4.8)

with multidegree two whose coefficients are given in [0]. To solve these two polynomials without
loss of generality to pνx the resultant with respect to the neutrino momentum pνy is computed as
follows. The coefficients and monomials of the two polynomials (4.5) and (4.8) are rewritten in
such a way that they are ordered in powers of pνy like

c
�

c0 p2
νy � c1 pνy � c2 � (4.9)

d
�

d0 p2
νy � d1 pνy � d2 (4.10)

where c and d are polynomials of the remaining unknowns pνx , pνy and the coefficients cm, dn are
univariate polynomials of pνx only. The coefficients contain two reducible singularities which can
be removed by multiplying them with the least common multiple of the factors which can become
singular. The resultant can then be obtained by computing the determinant of the Sylvester matrix

Res
�
pνy 	 � Det

����
�

c0 d0

c1 c0 d1 d0

c2 c1 d2 d1

c2 d2

�����
� � 0 (4.11)

7
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Figure 2: Left: Distribution of the expression c1d0
� c0d1 which appears in the denominator in the solution

of pνy . Since the distribution is symmetric around zero the module of the expression is plotted. As can be
seen the values assumed are far away from zero which would cause a singularity in the solution. To the
right, the coefficient a4 appearing in the equations describing the top quark parton branch is plotted. It is
flat distributed over the whole phase space including the value zero where an irreducible singularity of its
reciprocal resides. The coefficient b4 of the antitop quark parton branch behaves in the same way.

which is equated to zero. The omitted elements of the matrix are identical to zero. The resultant is
a univariate polynomial of the form

h0 p4
νx � h1 p3

νx � h2 p2
νx � h3 pνx � h4 (4.12)

which contains the remaining unknown pνx . It is of degree four and can be solved analytically.
The coefficients h are given in [0]. This result shows that there is at most a four fold ambiguity.
Here it has been assumed that the 4-vectors of the particles and the top quark and W boson masses
which enter into the system of equations are known exactly. Under these conditions there are two
solutions in about 80% of cases and four solutions else. In the next section it will be investigated
how this distribution changes under more realistic conditions when the assumption of exactness
between particles and reconstructed objects is not valid anymore. Once the solution of a neutrino
momentum pνx has been found the other neutrino and antineutrino momentum components have
to be determined. The antineutrino momentum pν̄x can be immediately obtained by the linear
transverse missing energy relation of the initial system of equations (2.1). To derive the neutrino
momentum pνy equation (4.9) is multiplied by d0 and equation (4.10) is multiplied by c0 so that
their difference yields a linear equation in the neutrino momentum pνy which can then be isolated
as

pνy

� c0d2

 c2d0

c1d0

 c0d1

� (4.13)

Again the antineutrino momentum pν̄y can be immediately obtained by the corresponding linear
transverse missing energy relation of the initial system of equations. As shown in Fig. 2, left plot,
the coefficient in the denominator of equation (4.13) does not acquire values which are even close
to the singularity at zero. Thus it is ensured that the neutrino momenta pνy and pν̄y can be computed
accurately over the whole phase space of possible solutions.

8
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Finally the longitudinal (anti-)neutrino momenta pνz and pν̄z can be easily obtained by the
linear equations (4.4) and (4.6) assuming that the coefficients a4 and b4 are different from zero
since they appear as a product together with the longitudinal (anti-)neutrino momenta themselves.
The distributions of the coefficients are shown in Fig. 2, right plot. The fraction of solutions
close to the singularity - irreducible in the analytical solution - is below the per mill level and
may be neglected for practical purposes. From a theoretical point of view this singularity can be
circumvented in solving the neutrino momenta pνz and pν̄z analytically with the equations 3.1 and
3.2 of the algebraic approach which does not contain any singularity. It has been verified that the
longitudinal (anti-)neutrino momentum does not typically vanish together with the coefficient a4

(b4) simultaneously, which would cause the singularity to disappear.

5. Performance

The performance studies discussed here are assuming Tevatron proton antiproton collider settings
with a centre of mass energy of 1 � 96TeV which has been set up in the Monte Carlo event generator
PYTHIA 6.220 [0]. Cross-checks at a centre of mass energy of 14TeV assuming the LHC proton
collider environment confirm the independence of the method of particular collider settings.

The performance of the algebraic approach making use of Sturm’s theorem can be confirmed
by the analytical solution. In both cases one has to zoom very strong into the area of interest,
close to a real solution, to be able to recognize a root of the univariate polynomial. The algebraic
approach finds solutions in 99.9% of events assuming the particle momenta to be known exactly.
The inefficiency, which is for practical purposes already a set of measure zero, reduces to the sub
per mill level in the analytical solution due to less elaborative computational algebra involved. The
neutrino momenta psol

ν of the solutions are compared to the generated ones pgen
ν by defining a metric

χ through

χ2 � � pgen
νx

 psol

νx 	 2 � � pgen
νy

 psol

νy 	 2 � � pgen
νz

 psol

νz 	 2
(5.1)

� � pgen
ν̄x


 psol
ν̄x 	 2 � � pgen

ν̄y


 psol
ν̄y 	 2 � � pgen

ν̄z


 psol
ν̄z 	 2 �

The solutions coincide typically within real precision to the generated neutrino momenta. Fig. 3
left plot shows impressively how accurate and reliably the method is working. If the W boson mass
is generated off-shell while its pole mass is assumed in the solution, the efficiency drops to 89%.
Relaxing the same assumption for the top quark mass results into a further decrease of efficiency
to 84%. Beyond, an infrared-safe cone algorithm [0] with cone size R

�
0 � 5 in the space spanned

by pseudorapidity and azimuthal angle has been applied to the hadronic final state particles. Two
reconstructed jets, two leptons and missing transverse energy are required for an event to be se-
lected. The jets are accepted as b-tagged if they coincide within ∆R � 0 � 5 with the generated b
quarks. The solution efficiency drops to 71% and can be re-established at 81% in solving both b
quark jet permutations. Smearing the leptons and jets with the energy resolution of the DØ detec-
tor [0] decreases the efficiency to 75%. In practice, a given event can be solved repeatedly, with
the energy of the particles and objects smeared randomly within the detector resolution once each
iteration to improve the solution efficiency. As already mentioned above these observations are
consistent between the algebraic approach [0] and the analytical solution [0]. This confirms on

9
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Figure 3: Solution χ2 defined as the difference between solved and generated neutrino momenta, added in
quadrature, for the closest solution of each event. The left plot shows agreement to real precision obtained
in the case of parton momenta inserted into the solution are known exactly. In the right plot reconstructed
objects smeared in energy with DØ detector resolution yield degraded agreement.

one hand the reliability of the algebraic approach and rises on the other hand the question what
numerical methods with a superior solution efficiency are actually solving.

Considering only events which could be solved it is important to investigate the number of so-
lutions in dependence of the experimental settings since this number is directly proportional to the
ambiguities of the solved and reconstructed events which in turn determines the significance of the
solutions and any observable making use of it [0]. The fraction of solved events having exactly two
solutions, the average number of solutions and its RMS is investigated for different experimental
settings. First the particle final state is considered. Relaxing the amount of assumptions about the
top quark and W boson masses (pole mass inserted into solution while off-shell generated) increases
the fraction of solved events with exactly two solutions while the average number of solutions and
its RMS decrease slightly. Allowing both b quark jet permutations - assuming that the charge of the
quarks can not be determined with adequate certainty - the fraction of events having exactly two
solutions drops considerably in favour of a higher solution multiplicity with larger RMS. Further
the number of solutions for reconstructed objects has been investigated in evaluating the following
sequence of conditions: First the right b quark permutation and then both permutations have been
solved. Then energy resolution smearing has been applied to the reconstructed objects and finally
100 solution iterations have been accomplished to take into account the uncertainty in the measured
energy of the reconstructed objects. The general tendency is that the fraction of solved events with
exactly two solutions decreases with less accurate knowledge about the particles and objects while
the solution multiplicity and its RMS does increase.

6. Conclusions

An algebraic approach exploiting Sturm’s theorem and the analytical solution of the system of
equations describing the t t̄ dilepton kinematics have been presented. Both solutions rely on the
technique of resultants to reduce two multivariate polynomials to one univariate polynomial. This
concept makes the use of symbolic computer algebra software to derive the solution superfluous.
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The analytical solution has two reducible singularities which can be removed and two irreducible
singularities which can be circumvented by exploiting the analytical Ansatz of the algebraic ap-
proach. The performance of the two methods is consistent with each other. The fraction of events
whithout any solution or with no solution matching the generated (anti-)neutrino momenta with real
precision - assuming that the particle momenta and masses inserted into the solution are known ex-
actly - is a set of measure zero and can in very good approximation be neglected for practical
purposes. Little deviations of the inserted particle momenta and masses from their true values drop
the solution efficiency and purity considerably. At the same time the solution multiplicity increases.
This raises the question what more efficient numerical methods are actually solving. General solu-
tion methods can compare their performance to the algebraic reference methods described here.
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