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1. Introduction

This work is closely related with the empirical literature on estimation of time varying risk
sensitivities. (e.g.: (1), (2), (3), (4), (10) and (11) amongst others), and contribute to the existing
literature mostly in two ways. First we provide an up to date and detailed analysis of time varying
nature of risk sensitivities on the US market. By using a a Kalman filter approach augmented
with a genetic algorithm for the log-likelihood optimization, we investigate the risk sensitivity for
a broad class of portfolios as well as for a wide range of stocks with different characteristics.1

Second, we propose and estimate a Value at Risk application on several stock portfolios based on
the estimation on a GRID computing environment, showing itspotential for enhancing the solution
of computational demanding problems with decentralized data retrieval.
The remainder of the paper is organized as follows. In Section 2 we present the market model
framework as a theoretical background to the empirical investigation. Section 3 introduces the data
set used in the empirical part and provides descriptive statistics of the analyzed stock portfolios. In
Section 4 we describe the estimation procedure and discuss the results of the empirical investigation
on the US stock market. In Section 5 we implement the risk management application and Section
6 concludes.

2. Theoretical Background

In this section we review the theoretical framework for our empirical estimation. Starting
from the Arbitrage Pricing Theory (APT) (cfr. (20), (21) and(22)), which models the statistical
evidence that asset payoff tends to move together, we derivea simple market model for stock
returns. Standard assumptions of APT are that markets are competitive and frictionless, and that
returns are generated according to

R = a+ B f + ε (2.1)

with ε ∼ N(0,Σ) Σ diagonal, whereR is an (Nx1) vector of returns,a is the (Nx1) vector of in-
tercepts of the factor model,B is the (NxN) matrix of factor sensitivities,f is the (Nx1) vector of
factors andε is the (Nx1) vectors of disturbances.
If a risk free asset exists and adopted factors are traded portfolios, exact factor pricing holds.
Throughout the paper we assume that a risk free asset is traded and the market portfolio is the
pricing factor. Therefore the pricing model can be expressed using a market portfolio as a factor:

Re
it = βiR

e
mt + εit , (2.2)

where the superscripte indicates excess returns.
As a departure from the classical APT models we consider timevarying factor sensitivities. More
specifically we assume a mean reverting process for the beta:

βit = βi + αi

(

βit−1−βi

)

+ σiε i
t , (2.3)

whereβi is the unconditional mean of the sensitivity relative to theasseti, σi is its conditional
volatility, αi is the mean reversion parameter, and the errorε i

t ∼ N(0,1) is i.i.d. Thus, considering

1To economize space and keep the paper readable, results on sigle stocks are available upon request.
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both equations (2.2) and (2.3), the proposed model for the asset returns is:

Re
it =βitR

e
mt + εit ,

βit =βi + αi

(

βit−1−βi

)

+ σiε i
t .

(2.4)

3. Data

In this Section we present and describe the main features of the financial series employed in
this study. Our empirical exercise is mainly based on the portfolios formed on Size (SIZE), Earning
Price (E-P), Dividend Price (D-P) and Industry (IND) from Kenneth French’s website2.
In order to better understand the empirical exercise, it is worth looking briefly at the basic charac-
teristics of the analyzed market. Table 1 presents, for eachof the analyzed portfolios, the mean and
standard deviation of the return time series. Panel A of Table 1 presents the descriptive statistics for
the SIZE based portfolios. During the entire sample period the SIZE portfolio, based on the lowest
quintile, outperforms by 46 basis points the portfolio based on the highest quintile, confirming the
well documented size effect (see (23), (24) and (25) among others). Panel B and C of Table 1 show
the descriptive statistics for the E-P and D-P based portfolios respectively. In these cases, the port-
folios based on the highest quintile systematically outperform the portfolios based on the lowest
quintile, confirming the well known value effect. (Cfr. for example (26)). Finally Panel D, Table
1, presents the descriptive statistics of the chosen industry portfolios. During the entire sample the
portfolios seem to have a similar volatility-return profile, except the Money portfolios that slightly
outperform the others.

4. Empirical Results

4.1 Estimation Procedure

The estimation of the model presented in equation (2.4) is performed using a Kalman filter,
where the observation equation and state equation are specified as follows:

Yt =ΦtSt + Rεt,

St =A + FSt−1 + Qvt .
(4.1)

In the above state-space formYt is a column vector that stores the asset returns observed at time t;
Φt is a column vector of the observable risk factor (in our case the market index) andSt is a column
vector of the unobservable risk factor sensitivities. In our model specification, the unobservable
variables are supposed to follow a simple mean reverting autoregressive process. Thus,A andF
are respectively column vectors of the unconditional meansand a [assets x assets] diagonal matrix
with the autoregressive parameters on the diagonal. Furthermore,Q andR are diagonal matrices of
the volatilities of the unobservable and the observable variables respectively. Finallyεt andvt are
column vectors of error terms with aN(0, I) probability distribution. To guarantee and facilitate
the correct estimation of the process parameters some restrictions are imposed. For all processes
the domain of the diffusion terms is restricted to be positive. Once the restriction is imposed, the

2A detailed description, along with the data, is available athttp://mba.tuck.dartmouth.edu/pages/faculty/ken.french
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Kalman filter is performed.
For implementing the algorithm we follow closely the procedure in (27).

For maximizing the log-likelihood of our problem we choose to implement a genetic algorithm
(GA) procedure. Two main features make GA more suitable thanother optimization algorithms:
first, a GA is usually more robust than other algorithms and itcan tolerate approximate or even
noisy design evaluation; second, a Genetic Algorithm can beefficiently parallelized and therefore
take full advantage of a GRID based application. In the next subsection we briefly describe the
implemented algorithm.

4.2 Genetic Algorithm

Genetic algorithms are search algorithms based on the mechanics of natural selection (see (28)
for a complete reference). Following (29), a genetic algorithm can be described with a pseudo-code
structure such as:

do ng generation

do nind individuals

translate bits into variables

compute objective

end do

do some statistics on the population individuals

do Create a new population:

by cross over:

select individuals

and reproduce

by mutation:

select individuals

and mutate

end do

end do

The key points of a GA are the operators used for selection andreproduction that are crucial for
the robustness and the efficiency of the algorithm.
In order to understand the mechanism of a GA, we illustrate inthe next subsection, some of the
operators and functions used in our implementation.

4.2.1 Coding

For starting the algorithm, it is necessary to define the initial population, that is any collection
of solutions that could reasonably span the whole solution space. In order to perform this task, we
generated a random sampling over that space, as explained in(30) and (31).3 Each design variable
is then coded in a finite-length string; traditionally, GAs use binary numbers to represent such
strings: a string has a finite length and each bit of a string can be either 0 or 1. For real function

3It is worth noting that, for avoiding local optimum solutions, the size of the population has to be 2 to 4 times the
size of variables, as noted by (32).
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optimization, however, it is more natural to use real numbers: the length of the real-number string
corresponds to the number of design variables (cfr. (33)). We adopted this coding technique.
After the initial population is generated the process of selection is implemented. The selection
(reproduction) operator selects chromosomes, according to their fitness function values, to choose
a new generation. In the selection procedure, the well-fitted individuals have more chances to be
selected. It is worth noting that it is not a deterministic choice: even solutions with a comparatively
low fitness may be chosen and they may reveal good choices in the evolution of the algorithm (see
(34)).
The three selection techniques usually used are:

Roulette wheel is the first and most popular operator. A selection probability proportional to its
fitness is assigned to each individual in the population. Theoperator is robust but computa-
tionally intensive, moreover it could cause premature convergence if no scaling of fitness is
applied.

Tournament overcomes the problem of fitness scaling and it is consideredmore efficient and
robust than roulette wheel. The characteristic of a tournament is to keep the best of a group
of individuals randomly selected. In our implementation weused this operator.

Local Geographic Selection elsewhere named as step-stone island model, is a particularcase of
Turnament Selection. The n-size individuals participating to the tournament are not selected
randomly in the population but through a local random walk inthe neighbourhoods of a given
individual being the population distributed in a N dimensional grid.

Next step in the genetic algorithm is to fill up the new generation. The main way to perform this task
is through the cross-over operator. Amongst the cross-overoperators one with the highest search
robustness is thetwo points cross-over; in this operator, two points are randomly chosen and the
genetic materials (i.e the design variables) are exchangedbetween the parent variables vectors, as
shown below:

A 0 0 1 0 1 1 0 1 1 1 1 0 1 1 1 0 A’
−→

B 1 1 1 1 0 1 1 0 0 0 1 1 0 1 0 1 B’

Another powerfull cross-over operator has been implemented: thedirectional cross-over; it assume
that a "direction of improvement" can be detected comparingthe fitness value of two reference
individuals. The schema is shown below:

1. for all individualsi

2. select individuali1, select individuali2

3. create the new individual as:

x̄ = x̄i + S · sign(Fi −Fi1) · (x̄i − x̄i1)+ T · sign(Fi −Fi2) · (x̄i − x̄i2)

whereS andT are random numbers in the interval[0,1], F is the value of the fitness function for
the corrisponding vector of variables ¯x.
Finally in order to enhance population diversity, a mutation operator is performed. A mutation is
a random change in the genetic material of a single individual; it is applied to genes by changing
them with a low probability,Pm. In our case, a mutation means switching a bit 0 to 1 and vice versa.
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This operator enables the optimization to get out of local minima.4 A mutation algorithm can be
described as follows:

A’ 1 1 1 0 1 1 1 0 −→ 1 1 1 0 0 1 1 0 A”

4.3 Results

In this subsection we address the in-sample accuracy of the presented model.
First it is interesting to assess the capability on the employed optimization algorithm. Figure 1
help us in analyzing the computational performance of the Genetic Algorithm. It shows, in term
of absolute value reached by the optimized likelihood function, the gain obtained increasing the
generations size. Clearly the Genetic Algorithm has an asymptote that is reached, in our test, at
1000 generations. The maximum value attained for the log-likelihood function is 6581.9. It is
worth noting that, with 500 generations, the attained valueis 6447.88, thus while diminishing the
number of generations by a factor of two would certainly helpin speeding up the algorithm, the
loss of accuracy is only of about 2%
Table 2 presents parameters estimation on the selected stock portfolios. By analyzing these results,
we can draw some preliminary insight on the goodness of fit of the proposed model. First, the
model seems to be able to explain a consistent part of the analyzed stock returns, with anR2 that
range from 0.65 for the Money industry portfolio to 0.98 for the highest quintile SIZE portfolio.
This result is consistent with an relevant strand of the literature, started by (35). In their paper a
conditional capital asset pricing model with time varying betas and market risk premiums is tested.
Using returns on human capital and aggregate wealth they areable to explain 57% of cross sectional
stock returns variability.
Analyzing in more details the presented panels some other features are worth noting. In Panel A,
where the SIZE portfolios are analyzed, the explanatory power of the model is increasing in size,
with an increment of 30 percentage points in the statistics from the smallest to the biggest portfolio.
This result is well documented in literature (see for example (36), (37) and (38)). Non surprisingly a
related pattern is followed by the estimated volatility parameters for the SIZE portfolios: where the
R2 is higher the volatility tends to be smaller, with an order ofmagnitude in the first quintile versus
the last quintile. Similar results can be inferred from Panel B and Panel C, where the estimated
parameters are presented for E-P and D-P portfolios respectively. In these cases, even if theR2

range is narrower, the variance of the growth stock portfolios seems to be better explained by the
model. Again the same pattern for the volatility of the unobservable process is founded. Finally,
Panel D presents the results for industry based portfolios.While the model performs well in most
of the analyzed portfolios, it is worth noting its relative lack of accuracy for the Money portfolio
with respect to the other industries.

5. An application to Risk Management

In this section we apply the estimation method proposed in Subsection 4.1 to a simple Value a
Risk (VaR) exercise.

4An intuitive characteristic of the mutation operator is that the higher the probability of mutation the more the search
process functions like a pure random search.
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We processed our data using a computational GRID technologyimplemented in a national facility
as part of the research project EGRID.

5.1 EGRID Project

As explained in details by Leto et al. in (39), the EGRID project is a research project funded
by MIUR5. The aim of the project is to investigate the role of GRID technologies in the field of
complex systems applied to economics and finance.
In the Risk Management exercise proposed in this Section, wefully take advantage of the GRID
infrastructure treating our application as multithread. Loosely speaking, multithreading can be
defined as a programming technique that enables an application to handle more than one operation
at the same time. A main application has been created and launched in a “server machine”: this
program manages the Genetic Algorithm and constantly listens to a port for communication with
other programs running in “client machines” inside the GRID(cfr. Fig. 3). Each client application
elaborates a particular configuration (a genetic individual of the generation) as required by the
server. In this setting, the most challenging task was to make sure that multiple threads do not
interfere with each other in an undesired way.

In a Risk Management setting, the VaR indicates, in percentage terms, the maximum probable
loss on a given portfolio, referring to a specific confidence interval and time horizon. Historically
the VaR literature has been evolved following two main approaches: parametric and non parametric
models (see (40) for a complete reference). In our empiricalexercise we use a simple parametric
approach, based on the beta estimation performed in Section4, for evaluating several stock portfo-
lios of the US market. Using the model proposed in equation 2.4, it is straightforward to define the
variance of a portfolio as:

σ2
p = w′ββ ′wσ2

m + w′Σw, (5.1)

wherew indicates a column vector of assets weights,β is a column vector of the estimated risk
sensitivities,σ2

m is the variance of the market factor andΣ the diagonal variance-covariance matrix
of idiosyncratic variances. It is a well known result that, as the number of assets in portfolio
increases, the idiosyncratic risk becomes negligible. Thus, for a well diversified portfolio we can
calculate the Value a Risk as:

VaR = αz

√

w′ββ ′wσ2
m

√
t; (5.2)

whereαz indicates the relevant percentile of the Z-distribution and t is the chosen time horizon.
The proposed VaR measure is tested on a set of equally weighted portfolios based on the SIZE,

E-P, D-P and Industry portfolios. The betas are estimated from the time-varying sensitivities as
proposed above, while the volatility of the market is simplycalculated as the historical standard
deviation of the market index returns. The chosen confidenceinterval is 5% one side losses and
the selected time horizon is one month. For assessing the accuracy of the calculated Value at
Risk we perform a Proportion of Failure (POF) test based on (41). Basically this test performs a
Likelihood-Ratio with 5% level, based on the number of exceedences in any given sample, where
the null hypothesis is that the estimated value for the exceedences matches its exact value.
Given its definition, the test is asymptoticallyχ2 distributed with one degree of freedom; thus if

5Ministero dell’Istruzione, Università e Ricerca: ItalianMinistry of Education, University and Research.
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the value of the test statistic exceeds the critical value of3.84, the Value at Risk model can be seen
as not reliable with a 95% confidence level. Table 3 shows the performance of the Value at Risk
measure via a backtesting. The obtained results are more than encouraging. In all the analyzed
portfolios the POF statistic is well below its critical value. Thus, we do not reject the null hypothe-
sis of a reliable VaR measure. In order to put our results in perspective, we estimate both the same
VaR measure with an Exponential Moving Average (EWMA) estimation of the market volatility,
and a full parametric Value at Risk following the procedure proposed by Riskmetrics.6 In the whole
sample of the analyzed portfolios, employing the EWMA volatility does not change the accuracy
of the proposed VaR measure. More importantly, in two out of four cases (Panel C and Panel D
Table 3) the VaR measure based on the model outperforms the full parametric VaR measure.
For further assessing the potential of a GRID structure in solving a Risk Management problem, we
test our model on a portfolio composed by fifty stocks randomly selected from the CRSP database.
Interestingly enough, with the use of the GRID infrastructure, we have obtained a reduction of
computation time proportional, to a certain extent, with the number of available clients. In partic-
ular we measure the performance of a GRID infrastructure on acluster of eight nodes. The speed,
shown in Figure 5 Panel A, is increasing dramatically when 3 clients are employed, gaining 193
seconds with respect to a single node, with a decrease of execution time from 426 to 233 seconds,
corresponding to a relative increase in performance of 45,3%. Employing 5 nodes is giving a fur-
ther improvement in the performance with a relative speed-up of 12%. For more than 5 nodes the
gain become negligible, with an average time of execution of205 seconds. For further investigate
the performance of the employed GRID cluster, we separate the computation time of our exercise
in time employed by the Genetic Algorithm, time employed forcommunication amongst nodes
and time for Kalman filter computation. Figure 5 Panel B, shows the employed time by the three
pieces of the whole algorithm incrementally, displaying clearly where the bottlenecks arise. First
of all, the GA is not parallelized in our implementation, thus it contribute with a constant amount
of time to the entire time spent in executing the algorithm. Secondly, the communication time is
also contributing nearly constantly to the total executiontime, showing even a minor time increase
when the number of clients increases. Third, the execution time employed by the Kalman filter is,
as expected, gaining the most from the Grid architecture; this is mainly due to the parallel struc-
ture of its code, that is taking full advantage of a distributed computational capability. Finally it is
worth noting that the performance of the VaR is comforting, with a POF statistics well above the
5% critical value for all the randomly selected fifty stocks portfolios.

6. Conclusion

The estimation of systematic risk has been one of the most studied topics in empirical finance.
Historically important research contributions were departing from the classical one factor constant
beta model, exploring the two possibilities of multi factors models and time varying sensitivities
respectively.
This paper refers to the latter stream of literature by estimating time varying sensitivities where the
betas are supposed to be unobservable. By Estimating the model via a Kalman filter augmented

6for a complete reference see http://www.riskmetrics.com
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with a genetic optimization algorithm, we are able to explain a large part of the observed time series
variance in several stock portfolios of the US market.
Furthermore we are able to calculate a Value at Risk measure,based on the proposed model, on a
GRID computing architecture. In this context, the use of GRID computing offers an opportunity to
enhance the solution of computational demanding problems with decentralized data retrieval.
Our results are more than promising in showing the accuracy of the proposed model coupled with
the capability of the GRID architecture in dealing, in a reasonable amount of time, with CPU use
intensive calculations and huge data retrieval queries.
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Table 1: Descriptive Statistics of Financial Series

This table reports the mean and standard deviation of the analyzed stock portfolios. The portfolios are from the KennethFrench

website. All returns are monthly value weighted.

∗ Sample starting July 1927.

∗∗ Postwar data available from July 1951.

Panel A: Size Portfolios
Qtn 1 Qtn 2 Qtn 3 Qtn 4 Qtn 5

Entire Sample
Mean 1.39% 1.26% 1.20% 1.12% 0.93%
Std 9.33 % 7.74% 7.07% 6.34% 5.25%
Postwar Sample
Mean 1.27% 1.24% 1.19% 1.16% 1.00%
Std 5.88% 5.47% 5.02% 4.72% 4.11%

Panel B: E-P Portfolios∗∗

Qtn 1 Qtn 2 Qtn 3 Qtn 4 Qtn 5
Postwar Sample
Mean 0.84% 1.01% 1.10% 1.33% 1.46%
Std 4.90% 4.19% 4.23% 4.16% 4.71%

Panel C: D-P Portfolios∗

Qtn 1 Qtn 2 Qtn 3 Qtn 4 Qtn 5
Entire Sample
Mean 0.96% 0.98% 0.94% 1.12% 1.10%
Std 5.98% 5.36% 5.49% 5.49% 6.11%
Postwar Sample
Mean 1.04% 1.07% 1.02% 1.19% 1.17%
Std 5.07% 4.44% 4.18% 4.00% 3.88%

Panel D: Industry Portfolios
Manuf Utils Shops Money Other

Entire Sample
Mean 1.03% 0.97% 0.96% 1.13% 0.97%
Std 5.47% 5.59% 5.75% 5.86% 6.49%
Postwar Sample
Mean 1.08% 1.02% 1.02% 1.23% 1.08%
Std 4.45% 4.08% 5.27% 5.04% 4.83%
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Figure 1: Genetic Algorithm Performance

This figure plots the performance, in term of absolute value of the obtained likelihood function, with respect to the number of
simulations employed. The GA is employed on the optimization process of a fifty stocks portfolio, randomly selected, with a time
span of 33 years. All the data are from the CRSP database.
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Table 2: Parameter Estimation

This table reports the estimated parameters of the analyzedstock portfolios. The portfolios are from the Kenneth French website. All

returns are monthly value weighted.

∗ Sample starting July 1927.

∗∗Data available from July 1951.

Panel A: Size Portfolios
Qtn 1 Qtn 2 Qtn 3 Qtn 4 Qtn 5

β 1.099 1.311 1.292 1.181 0.965
(0.054) (0.041) (0.029) (0.015) (0.006)

α 0.850 0.817 0.839 0.785 0.320
(0.020) (0.031) (0.030) (0.061) (0.131)

σ 0.045 0.040 0.015 0.005 0.003
(0.003) (0.006) (0.002) (0.001) (0.001)

R2 0.667 0.818 0.902 0.949 0.985

Panel B: E-P Portfolios∗∗

Qtn 1 Qtn 2 Qtn 3 Qtn 4 Qtn 5
β 1.115 1.013 0.925 1.002 1.011

(0.025) (0.032) (0.019) (0.031) (0.031)
α 0.880 0.830 0.636 0.697 0.589

(0.045) (0.029) (0.148) (0.053) (0.108)
σ 0.003 0.015 0.011 0.037 0.051

(0.001) (0.004) (0.002) (0.007) (0.009)
R2 0.899 0.903 0.863 0.803 0.748

Panel C: D-P Portfolios∗

Qtn 1 Qtn 2 Qtn 3 Qtn 4 Qtn 5
β 0.920 0.953 0.812 0.965 0.412

(0.030) (0.021) (0.026) (0.024) (0.142)
α 0.841 0.750 0.801 0.710 0.972

(0.026) (0.032) (0.028) (0.054) (0.008)
σ 0.017 0.018 0.019 0.025 0.014

(0.003) (0.002) (0.004) (0.004) (0.003)
R2 0.916 0.928 0.895 0.869 0.830

Panel D: Industry Portfolios
Manuf Utils Shops Money Other

β 1.013 0.891 1.185 0.870 1.070
(0.050) (0.041) (0.047) (0.032) (0.025)

α 0.935 0.898 0.916 0.756 0.758
(0.016) (0.021) (0.015) (0.045) (0.038)

σ 0.009 0.015 0.013 0.036 0.023
(0.003) (0.007) (0.002) (0.004) (0.004)

R2 0.883 0.934 0.848 0.653 0.884
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Table 3: Value at Risk Backtesting

This table reports the results of a Value at Risk Backtestingon the analyzed stock portfolios. The portfolios are equally weighted

based on the Kenneth French portfolios. All returns are monthly value weighted. The decay factor chosen for the Exponential moving

average is 0.97, while its rolling window is five years.

∗ Sample starting July 1927.

∗∗Data available from July 1951.

Panel A: Size Portfolio
Expected Actual LR test

VaR Full Model 44.000 40.000 0.404
VaR EWMA Model 44.000 40.000 0.404
VaR Full EWMA 44.000 40.000 0.404

Panel B: E-P Portfolio∗∗

Expected Actual LR test
VaR Full Model 29.000 28.000 0.040
VaR EWMA Model 29.000 27.000 0.156
VaR Full EWMA 29.000 27.000 0.156

Panel C: D-P Portfolio∗

Expected Actual LR test
VaR Full Model 43.000 43.000 0.005
VaR EWMA Model 43.000 42.000 0.051
VaR Full EWMA 43.000 34.000 2.331

Panel D: Industry Portfolios
Expected Actual LR test

VaR Full Model 44.000 41.000 0.227
VaR EWMA Model 44.000 41.000 0.227
VaR Full EWMA 44.000 36.000 1.647
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Figure 3: Plot of Value at Risk Backtesting

This figure plots the results from a Value a Risk Backtesting.Portfolios are equally weighted and based on the Kenneth French
portfolios. All returns are monthly value weighted. The decay factor chosen for the Exponential moving average is 0.97, while its
rolling window is five years. The left column shows the actualreturns with a VaR losses band calculated with the Full Modelapproach
while the right column shows the losses band calculated withthe Full EWMA approach.
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Figure 4: Performance gain on a GRID architecture.

This figure plots the performance of a 8 nodes GRID cluster in performing a Risk Management application. The
portfolio employed is generated randomly by picking fifty stocks from the CRSP database, with a time span of 33
years. Panel A shows the total computational time, while Panel B shows the time added, incrementally, to the to-
tal computational time by the Genetic Algorithm, the communication time and the Kalman filter algorithm respectively.
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