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1. Introduction

This work is closely related with the empirical literature estimation of time varying risk
sensitivities. (e.g.: (1), (2), (3), (4), (10) and (11) amgstnothers), and contribute to the existing
literature mostly in two ways. First we provide an up to datd detailed analysis of time varying
nature of risk sensitivities on the US market. By using a ankéal filter approach augmented
with a genetic algorithm for the log-likelihood optimizatti, we investigate the risk sensitivity for
a broad class of portfolios as well as for a wide range of stogkh different characteristics.
Second, we propose and estimate a Value at Risk applicatig@@eral stock portfolios based on
the estimation on a GRID computing environment, showingdt®ntial for enhancing the solution
of computational demanding problems with decentralizdd detrieval.

The remainder of the paper is organized as follows. In SeQiaove present the market model

framework as a theoretical background to the empiricalstigation. Section 3 introduces the data
set used in the empirical part and provides descriptivéstitat of the analyzed stock portfolios. In

Section 4 we describe the estimation procedure and didoaeisesults of the empirical investigation

on the US stock market. In Section 5 we implement the risk mament application and Section

6 concludes.

2. Theoretical Background

In this section we review the theoretical framework for oorpé&rical estimation. Starting
from the Arbitrage Pricing Theory (APT) (cfr. (20), (21) a(®R)), which models the statistical
evidence that asset payoff tends to move together, we darsienple market model for stock
returns. Standard assumptions of APT are that markets anpeatiive and frictionless, and that
returns are generated according to

R=a+Bf+¢ (2.1)

with € ~ N(0,%) X diagonal, where&R is an (Nx1) vector of returnsg is the (Nx1) vector of in-

tercepts of the factor modeB is the (NxN) matrix of factor sensitivitied, is the (Nx1) vector of

factors anck is the (Nx1) vectors of disturbances.

If a risk free asset exists and adopted factors are tradetfblims, exact factor pricing holds.
Throughout the paper we assume that a risk free asset igdteattethe market portfolio is the
pricing factor. Therefore the pricing model can be expreéssing a market portfolio as a factor:

Rt = BRy + &t (2.2)

where the superscrigtindicates excess returns.
As a departure from the classical APT models we consider ¥ianging factor sensitivities. More
specifically we assume a mean reverting process for the beta:

Br=Bi+ai (Be1—B) + el (2.3)

where 3 is the unconditional mean of the sensitivity relative to #sseti, o; is its conditional
volatility, a; is the mean reversion parameter, and the egfer N(0,1) is i.i.d. Thus, considering

1To economize space and keep the paper readable, resulgi@stsicks are available upon request.
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both equations (2.2) and (2.3), the proposed model for thet asturns is:

Rﬁ ZBitRﬁt + &it,

Bt =B+ ai (Bit-l—ﬁ) + 0. 24)

3. Data

In this Section we present and describe the main featurdsediriancial series employed in
this study. Our empirical exercise is mainly based on thé@as formed on Size (SIZE), Earning
Price (E-P), Dividend Price (D-P) and Industry (IND) fromn€eth French’'s website
In order to better understand the empirical exercise, itdglvooking briefly at the basic charac-
teristics of the analyzed market. Table 1 presents, for efttte analyzed portfolios, the mean and
standard deviation of the return time series. Panel A oféalgresents the descriptive statistics for
the SIZE based portfolios. During the entire sample pefied3IZE portfolio, based on the lowest
quintile, outperforms by 46 basis points the portfolio lehea the highest quintile, confirming the
well documented size effect (see (23), (24) and (25) amadmgrs). Panel B and C of Table 1 show
the descriptive statistics for the E-P and D-P based paHakspectively. In these cases, the port-
folios based on the highest quintile systematically odtwer the portfolios based on the lowest
quintile, confirming the well known value effect. (Cfr. foxample (26)). Finally Panel D, Table
1, presents the descriptive statistics of the chosen indpsttfolios. During the entire sample the
portfolios seem to have a similar volatility-return profiégxcept the Money portfolios that slightly
outperform the others.

4. Empirical Results

4.1 Estimation Procedure

The estimation of the model presented in equation (2.4) iopred using a Kalman filter,
where the observation equation and state equation ardisgess follows:

Yt ZCDtSt + R&?

4.1)
S =A+FS_1+Qwu.

In the above state-space folis a column vector that stores the asset returns observadet; t

@ is a column vector of the observable risk factor (in our chsanarket index) an§ is a column
vector of the unobservable risk factor sensitivities. Im mwodel specification, the unobservable
variables are supposed to follow a simple mean revertingragitessive process. ThusandF

are respectively column vectors of the unconditional meanusa [assets x assets] diagonal matrix
with the autoregressive parameters on the diagonal. Fartre,Q andR are diagonal matrices of
the volatilities of the unobservable and the observablellas respectively. Finallg andv; are
column vectors of error terms withM(0,1) probability distribution. To guarantee and facilitate
the correct estimation of the process parameters sométiests are imposed. For all processes
the domain of the diffusion terms is restricted to be positi®nce the restriction is imposed, the

2A detailed description, along with the data, is availablktgi://mba.tuck.dartmouth.edu/pages/faculty/kendhe
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Kalman filter is performed.
For implementing the algorithm we follow closely the progeslin (27).

For maximizing the log-likelihood of our problem we choosemplement a genetic algorithm
(GA) procedure. Two main features make GA more suitable dihar optimization algorithms:
first, a GA is usually more robust than other algorithms anchit tolerate approximate or even
noisy design evaluation; second, a Genetic Algorithm caeffiéently parallelized and therefore
take full advantage of a GRID based application. In the naksection we briefly describe the
implemented algorithm.

4.2 Genetic Algorithm

Genetic algorithms are search algorithms based on the miestat natural selection (see (28)
for a complete reference). Following (29), a genetic athanican be described with a pseudo-code
structure such as:

do ng generation
do nind individuals
translate bits into variabl es
conput e obj ective
end do
do sone statistics on the popul ation individuals
do Create a new popul ation
by cross over:
sel ect individuals
and reproduce
by nutation:
sel ect individuals
and nutate
end do
end do

The key points of a GA are the operators used for selectionrgprbduction that are crucial for
the robustness and the efficiency of the algorithm.

In order to understand the mechanism of a GA, we illustratihénnext subsection, some of the
operators and functions used in our implementation.

4.2.1 Coding

For starting the algorithm, it is necessary to define théinitopulation, that is any collection
of solutions that could reasonably span the whole soluti@ts. In order to perform this task, we
generated a random sampling over that space, as explai@d)iand (31¢ Each design variable
is then coded in a finite-length string; traditionally, GAseubinary numbers to represent such
strings: a string has a finite length and each bit of a stringbmaeither 0 or 1. For real function

31t is worth noting that, for avoiding local optimum solutmrthe size of the population has to be 2 to 4 times the
size of variables, as noted by (32).
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optimization, however, it is more natural to use real nurebdre length of the real-number string
corresponds to the number of design variables (cfr. (339 adbpted this coding technique.

After the initial population is generated the process oéatidn is implemented. The selection
(reproduction) operator selects chromosomes, accorditttetr fitness function values, to choose
a new generation. In the selection procedure, the wellfitteividuals have more chances to be
selected. Itis worth noting that it is not a deterministioicle: even solutions with a comparatively
low fithess may be chosen and they may reveal good choices ivtiiution of the algorithm (see
(34)).

The three selection techniques usually used are:

Roulette whedl is the first and most popular operator. A selection prolghyiroportional to its
fitness is assigned to each individual in the population. dperator is robust but computa-
tionally intensive, moreover it could cause premature eagence if no scaling of fitness is
applied.

Tournament overcomes the problem of fithess scaling and it is considaeretk efficient and
robust than roulette wheel. The characteristic of a tousrans to keep the best of a group
of individuals randomly selected. In our implementationwged this operator.

L ocal Geographic Selection elsewhere named as step-stone island model, is a partzagarof
Turnament Selection. The n-size individuals particigatimthe tournament are not selected
randomly in the population but through a local random walthineighbourhoods of a given
individual being the population distributed in a N dimemsibgrid.

Next step in the genetic algorithm is to fill up the new generatThe main way to perform this task

is through the cross-over operator. Amongst the cross-aperators one with the highest search

robustness is thevo points cross-over; in this operator, two points are randomly chosen and the

genetic materials (i.e the design variables) are exchahgideen the parent variables vectors, as
shown below:

Another powerfull cross-over operator has been implenteritedirectional cross-over; it assume
that a "direction of improvement" can be detected compattiegfitness value of two reference
individuals. The schema is shown below:

1. for all individualsi
2. select individuall, select individual2
3. create the new individual as:
X=%+S-sign(F — Fi) - (X —X1) + T -sign(F — Fa) - (X — %2)

whereSandT are random numbers in the inter8l 1], F is the value of the fithess function for
the corrisponding vector of variables

Finally in order to enhance population diversity, a mutatiperator is performed. A mutation is
a random change in the genetic material of a single indivjduies applied to genes by changing
them with a low probabilityPy,. In our case, a mutation means switching a bit 0 to 1 and vicsave
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This operator enables the optimization to get out of localima® A mutation algorithm can be
described as follows:

A 1 1 1 0 1 1 1 0 — 1 1 1 O O 1 1 O A’

4.3 Results

In this subsection we address the in-sample accuracy ofrésepted model.

First it is interesting to assess the capability on the egygulcoptimization algorithm. Figure 1
help us in analyzing the computational performance of theeBe Algorithm. It shows, in term
of absolute value reached by the optimized likelihood fiom;tthe gain obtained increasing the
generations size. Clearly the Genetic Algorithm has an asytm that is reached, in our test, at
1000 generations. The maximum value attained for the kajifiood function is 658D. It is
worth noting that, with 500 generations, the attained vau@4788, thus while diminishing the
number of generations by a factor of two would certainly halgpeeding up the algorithm, the
loss of accuracy is only of about 2%

Table 2 presents parameters estimation on the selectddmidolios. By analyzing these results,
we can draw some preliminary insight on the goodness of fihnefgroposed model. First, the
model seems to be able to explain a consistent part of thgzathbktock returns, with aR? that
range from 065 for the Money industry portfolio t0.08 for the highest quintile SIZE portfolio.
This result is consistent with an relevant strand of thediiere, started by (35). In their paper a
conditional capital asset pricing model with time varyiregds and market risk premiums is tested.
Using returns on human capital and aggregate wealth theabéedio explain 57% of cross sectional
stock returns variability.

Analyzing in more details the presented panels some otlaguries are worth noting. In Panel A,
where the SIZE portfolios are analyzed, the explanatorygoaf the model is increasing in size,
with an increment of 30 percentage points in the statistm® the smallest to the biggest portfolio.
This result is well documented in literature (see for exan{pb), (37) and (38)). Non surprisingly a
related pattern is followed by the estimated volatilitygraeters for the SIZE portfolios: where the
R? is higher the volatility tends to be smaller, with an orden@gnitude in the first quintile versus
the last quintile. Similar results can be inferred from Rdahand Panel C, where the estimated
parameters are presented for E-P and D-P portfolios réselgctIn these cases, even if tiie
range is narrower, the variance of the growth stock pod$otieems to be better explained by the
model. Again the same pattern for the volatility of the urelsable process is founded. Finally,
Panel D presents the results for industry based portfolidisile the model performs well in most
of the analyzed portfolios, it is worth noting its relativack of accuracy for the Money portfolio
with respect to the other industries.

5. An application to Risk M anagement

In this section we apply the estimation method proposed bs&ction 4.1 to a simple Value a
Risk (VaR) exercise.

4An intuitive characteristic of the mutation operator isttte higher the probability of mutation the more the search
process functions like a pure random search.
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We processed our data using a computational GRID technatoglemented in a national facility
as part of the research project EGRID.

5.1 EGRID Project

As explained in details by Leto et al. in (39), the EGRID pobjis a research project funded
by MIUR®. The aim of the project is to investigate the role of GRID tealbgies in the field of
complex systems applied to economics and finance.

In the Risk Management exercise proposed in this Sectiorfullyetake advantage of the GRID
infrastructure treating our application as multithreadoogely speaking, multithreading can be
defined as a programming technique that enables an apptidathandle more than one operation
at the same time. A main application has been created andHadrin a “server machine”: this
program manages the Genetic Algorithm and constantlyniste a port for communication with
other programs running in “client machines” inside the GR¢D. Fig. 3). Each client application
elaborates a particular configuration (a genetic indiichfathe generation) as required by the
server. In this setting, the most challenging task was toensake that multiple threads do not
interfere with each other in an undesired way.

In a Risk Management setting, the VaR indicates, in pergenterms, the maximum probable
loss on a given portfolio, referring to a specific confidengerival and time horizon. Historically
the VaR literature has been evolved following two main apphes: parametric and non parametric
models (see (40) for a complete reference). In our empiggatcise we use a simple parametric
approach, based on the beta estimation performed in Sektionevaluating several stock portfo-
lios of the US market. Using the model proposed in equatidni®is straightforward to define the
variance of a portfolio as:

05 =W BB'WOZ+WIw, (5.1)

wherew indicates a column vector of assets weiglftds a column vector of the estimated risk
sensitivities,o? is the variance of the market factor ahdhe diagonal variance-covariance matrix
of idiosyncratic variances. It is a well known result thas, tae number of assets in portfolio
increases, the idiosyncratic risk becomes negligible.sTFur a well diversified portfolio we can

calculate the Value a Risk as:
VaR = a1/ W BB'Wo2\A; (5.2)

whereaq; indicates the relevant percentile of the Z-distribution &is the chosen time horizon.
The proposed VaR measure is tested on a set of equally wdigbttfolios based on the SIZE,

E-P, D-P and Industry portfolios. The betas are estimatewh fihe time-varying sensitivities as
proposed above, while the volatility of the market is simphfculated as the historical standard
deviation of the market index returns. The chosen confidémeeval is 5% one side losses and
the selected time horizon is one month. For assessing theamycof the calculated Value at
Risk we perform a Proportion of Failure (POF) test based ai. (Basically this test performs a
Likelihood-Ratio with 5% level, based on the number of exiggres in any given sample, where
the null hypothesis is that the estimated value for the edeeees matches its exact value.

Given its definition, the test is asymptoticalif distributed with one degree of freedom; thus if

SMinistero dell'lstruzione, Universita e Ricerca: Italidinistry of Education, University and Research.
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the value of the test statistic exceeds the critical valug&4, the Value at Risk model can be seen
as not reliable with a 95% confidence level. Table 3 shows énwpnance of the Value at Risk
measure via a backtesting. The obtained results are maneeti@uraging. In all the analyzed
portfolios the POF statistic is well below its critical valuThus, we do not reject the null hypothe-
sis of a reliable VaR measure. In order to put our results isgeExtive, we estimate both the same
VaR measure with an Exponential Moving Average (EWMA) estion of the market volatility,
and a full parametric Value at Risk following the proceduregmsed by RiskmetricsIn the whole
sample of the analyzed portfolios, employing the EWMA witgtdoes not change the accuracy
of the proposed VaR measure. More importantly, in two outooir fcases (Panel C and Panel D
Table 3) the VaR measure based on the model outperformslilpafametric VaR measure.

For further assessing the potential of a GRID structure virsp a Risk Management problem, we
test our model on a portfolio composed by fifty stocks randoselected from the CRSP database.
Interestingly enough, with the use of the GRID infrastruefuwe have obtained a reduction of
computation time proportional, to a certain extent, with tumber of available clients. In partic-
ular we measure the performance of a GRID infrastructure dosder of eight nodes. The speed,
shown in Figure 5 Panel A, is increasing dramatically whetligéhts are employed, gaining 193
seconds with respect to a single node, with a decrease afittxed¢ime from 426 to 233 seconds,
corresponding to a relative increase in performance o83%b Employing 5 nodes is giving a fur-
ther improvement in the performance with a relative spgedful2%. For more than 5 nodes the
gain become negligible, with an average time of executioR0&f seconds. For further investigate
the performance of the employed GRID cluster, we separatedmputation time of our exercise
in time employed by the Genetic Algorithm, time employed éommunication amongst nodes
and time for Kalman filter computation. Figure 5 Panel B, shde employed time by the three
pieces of the whole algorithm incrementally, displayingacly where the bottlenecks arise. First
of all, the GA is not parallelized in our implementation, shiticontribute with a constant amount
of time to the entire time spent in executing the algorithrecéhdly, the communication time is
also contributing nearly constantly to the total executiore, showing even a minor time increase
when the number of clients increases. Third, the execuiinea émployed by the Kalman filter is,
as expected, gaining the most from the Grid architectuiis;ishmainly due to the parallel struc-
ture of its code, that is taking full advantage of a distdsltomputational capability. Finally it is
worth noting that the performance of the VaR is comfortinghva POF statistics well above the
5% critical value for all the randomly selected fifty stockstfolios.

6. Conclusion

The estimation of systematic risk has been one of the madiestiopics in empirical finance.
Historically important research contributions were dépgrfrom the classical one factor constant
beta model, exploring the two possibilities of multi factanodels and time varying sensitivities
respectively.

This paper refers to the latter stream of literature by estiimy time varying sensitivities where the
betas are supposed to be unobservable. By Estimating thelmiada Kalman filter augmented

5for a complete reference see http://www.riskmetrics.com
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with a genetic optimization algorithm, we are able to expkalarge part of the observed time series
variance in several stock portfolios of the US market.

Furthermore we are able to calculate a Value at Risk meakased on the proposed model, on a
GRID computing architecture. In this context, the use of BRdbmputing offers an opportunity to
enhance the solution of computational demanding probleitisdgcentralized data retrieval.

Our results are more than promising in showing the accuratyeoproposed model coupled with
the capability of the GRID architecture in dealing, in a mable amount of time, with CPU use
intensive calculations and huge data retrieval queries.
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Table 1: Descriptive Statistics of Financial Series

This table reports the mean and standard deviation of thiyzathstock portfolios. The portfolios are from the Kenné&ttench

website. All returns are monthly value weighted.
* Sample starting July 1927.

** Postwar data available from July 1951.

Panel A: Size Portfolios

Qtn 1 Qtn 2 Qtn 3 Qtn 4 Qtn5
Entire Sample
Mean 1.39% 1.26% 1.20% 1.12% 0.93%
Std 9.33% 7.74% 7.07% 6.34% 5.25%
Postwar Sample
Mean 1.27% 1.24% 1.19% 1.16% 1.00%
Std 5.88% 5.47% 5.02% 4.72% 4.11%

Panel B: E-P Portfoligs

Qtn 1 Qtn 2 Qtn 3 Qtn 4 Qtn 5
Postwar Sample
Mean 0.84% 1.01% 1.10% 1.33% 1.46%
Std 4.90% 4.19% 4.23% 4.16% 4.71%

Panel C: D-P Portfolio$

Qtn 1 Qtn 2 Qtn 3 Qtn 4 Qtn 5
Entire Sample
Mean 0.96% 0.98% 0.94% 1.12% 1.10%
Std 5.98% 5.36% 5.49% 5.49% 6.11%
Postwar Sample
Mean 1.04% 1.07% 1.02% 1.19% 1.17%
Std 5.07% 4.44% 4.18% 4.00% 3.88%

Panel D: Industry Portfolios

Manuf Utils Shops Money Other
Entire Sample
Mean 1.03% 0.97% 0.96% 1.13% 0.97%
Std 5.47% 5.59% 5.75% 5.86% 6.49%
Postwar Sample
Mean 1.08% 1.02% 1.02% 1.23% 1.08%
Std 4.45% 4.08% 5.27% 5.04% 4.83%
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Figure1: Genetic Algorithm Performance

This figure plots the performance, in term of absolute valfi¢ghe obtained likelihood function, with respect to the neniof
simulations employed. The GA is employed on the optimizafioocess of a fifty stocks portfolio, randomly selected hvéttime

span of 33 years. All the data are from the CRSP database.
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Figure 2: A simple representation of a multithreading application.
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Table 2: Parameter Estimation

This table reports the estimated parameters of the analtpe#t portfolios. The portfolios are from the Kenneth Fiemebsite. All

returns are monthly value weighted.
* Sample starting July 1927.
**Data available from July 1951.

Panel A: Size Portfolios

Qtn 1 Qtn 2 Qtn 3 Qtn 4 Qtn 5
B 1.099 1.311 1.292 1.181 0.965
(0.054) (0.041) (0.029 (0.015 (0.006)
a 0.850 0.817 0.839 0.785 0.320
(0.020) (0.031 (0.030 (0.062) (0.131
o 0.045 0.040 0.015 0.005 0.003
(0.003) (0.006) (0.002 (0.002) (0.001
R2 0.667 0.818 0.902 0.949 0.985
Panel B: E-P Portfolios
Qtn1 Qtn 2 Qtn 3 Qtn 4 Qtn 5
B 1.115 1.013 0.925 1.002 1.011
(0.025) (0.032 (0.019 (0.031) (0.031)
a 0.880 0.830 0.636 0.697 0.589
(0.045) (0.029 (0.148 (0.053 (0.108
o 0.003 0.015 0.011 0.037 0.051
(0.001 (0.004) (0.002 (0.007) (0.009)
R2 0.899 0.903 0.863 0.803 0.748
Panel C: D-P Portfolio$
Qtn1 Qtn 2 Qtn 3 Qtn 4 Qtn 5
B 0.920 0.953 0.812 0.965 0.412
(0.030 (0.021) (0.026) (0.029 (0.142
a 0.841 0.750 0.801 0.710 0.972
(0.026) (0.032 (0.028 (0.059) (0.008
o 0.017 0.018 0.019 0.025 0.014
(0.003) (0.002 (0.009) (0.009) (0.003
R2 0.916 0.928 0.895 0.869 0.830
Panel D: Industry Portfolios
Manuf Utils Shops Money Other
B 1.013 0.891 1.185 0.870 1.070
(0.050) (0.041 (0.047) (0.032 (0.025
a 0.935 0.898 0.916 0.756 0.758
(0.016) (0.021) (0.015 (0.045 (0.038
o 0.009 0.015 0.013 0.036 0.023
(0.003 (0.007) (0.002 (0.004) (0.004)
R2 0.883 0.934 0.848 0.653 0.884
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Table 3: Value at Risk Backtesting

This table reports the results of a Value at Risk Backtestinghe analyzed stock portfolios. The portfolios are eguaiighted

based on the Kenneth French portfolios. All returns are iigpnvialue weighted. The decay factor chosen for the Expaalemioving

average is ®7, while its rolling window is five years.
* Sample starting July 1927.
**Data available from July 1951.

Panel A: Size Portfolio

Expected Actual LR test

VaR Full Model 44.000 40.000 0.404

VaR EWMA Model 44.000 40.000 0.404

VaR Full EWMA 44.000 40.000 0.404
Panel B: E-P Portfolitf

Expected Actual LR test

VaR Full Model 29.000 28.000 0.040

VaR EWMA Model 29.000 27.000 0.156

VaR Full EWMA 29.000 27.000 0.156
Panel C: D-P Portfolid

Expected Actual LR test

VaR Full Model 43.000 43.000 0.005

VaR EWMA Model 43.000 42.000 0.051

VaR Full EWMA 43.000 34.000 2.331

Panel D: Industry Portfolios

Expected Actual LR test

VaR Full Model 44.000 41.000 0.227

VaR EWMA Model 44.000 41.000 0.227

VaR Full EWMA 44.000 36.000 1.647
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Figure 3: Plot of Value at Risk Backtesting

This figure plots the results from a Value a Risk Backtestifprtfolios are equally weighted and based on the Kennethchre
portfolios. All returns are monthly value weighted. The agdactor chosen for the Exponential moving average.9 Owhile its
rolling window is five years. The left column shows the actedlirns with a VaR losses band calculated with the Full Maggroach
while the right column shows the losses band calculated théh-ull EWMA approach.
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Figure4: Performance gain on a GRID architecture.

This figure plots the performance of a 8 nodes GRID cluster eérfopming a Risk Management application. The

portfolio employed is generated randomly by picking fiftyockts from the CRSP database, with a time span of 33

years. Panel A shows the total computational time, while ePa® shows the time added, incrementally, to the to-

tal computational time by the Genetic Algorithm, the comimafion time and the Kalman filter algorithm respectively.
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