OF SCIENCE

Real-time grid computing for financial applications

Stefano Cozzini*
CNR-INFM Democritos and EGRID project

E-mail: cozziniQRdemocritos.it

Riccardo di Meo, Ezio Corso
EGRID project ICTP
E-mail: {dimeo, ecorso}@egrid.it

We describe the porting of a test case financial application on the EGRID infrastructure, and the

approach we used to guarantee real time computing.

Grid Technology for Financial Modeling and Simulation
3-4 february 2006
Palermo, Italy

*Speaker.

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



Real-time grid computing for financial applications Stefano Cozzini

1. Introduction

Computing grids are attractive for large scale financial applications: this is especially true
for dynamic financial services where applications must complete complex tasks within strict time
intervals. The traditional response has been to over-provision resources for ensuring plenty of
headroom in availability, resulting in the maintainance of large inhouse and unused computational
resources with a great cost in terms of infrastructure. Worse, nowadays some of these complex
tasks need an amount of computing power that is unfeasible to keep idle most of the time in house.

Computing grids can deliver the amounts of power needed in such a scenario, but there are still
large limitations to overcome. In this brief report we address the solution we developed to provide
real time computing power through the EGRID facility [1] for a test case financial application.

2. The computational problem

The test case we consider is an application that estimates the sensitivities of a set of stocks
to specific risk factors: technical details about the procedure can be found elsewhere [2]; we will
present here only the computational details of the application to better define the problem we faced,
and the solutions adopted for porting it to the grid.

The application employs a Genetic Algorithm GA approach, and so starts by randomly gen-
erating an initial population of solutions which get self-crossed; then a Kalman filter is applied to
evaluate the goodness of the self-crossed solutions; the best ones are chosen and they get called
the first generation. All subsequent generations are similarly produced: mutations are introduced
in the current generation and a Kalman filter is applied to gauge each mutated solution; the best
ones are selected for to the next generation. This process goes on until a predetermined number of
generations is reached. In order to better focus on the most meaningful aspects of the approach, for
the rest of this discussion the Kalman filtering will be considered as a separate step from the rest
of the Genetic Algorithm. The application, therefore, can be seen as consisting of a Genetic Algo-
rithm GA step that produces new generations, and a Kalman filter step that evaluates the goodnes
of a generation.

As far as the GA step is concerned, a standard run is characterised by two different parameters:
the number of generations or equivalently the number of iterations, and the size of the population in
each generation. For the Kalman filter step, in a standard run the sum of all evaluations is roughly
90% of the full computational cost.

The data-size of the program depends on the number of stocks included and on the length of
the time series for each stock considered. For a small size problem like the case study we started
from, there are 50 stock options with time series of 100 elements, and it takes about 300 seconds to
complete using 1000 generations each containing 600 individuals. The computational demand in
terms of memory scales quadratically, while the total computational power needed by the Kalman
filter has a complicated pattern.

The behavior, as a function of the number of generations, is depicted in figure 1. There, it
is also reported the histogram of CPU time for a single Kalman call: clearly the contribution of a
single evaluation is negligible. Still, as one can infer from 2, for all possible combinations of the
number of individuals vs the number of generations, the overall CPU time spent in the Kalman

77/2



Real-time grid computing for financial applications Stefano Cozzini

Kalman filter CPU consumption per generation.

03"
"8 0.25" ‘W W“
E " T A T .
173 Mﬂ
S o1 A W
o 01" i
e /
= 0.05" /,%,
o
0 100 200 300 400 500 600 700 800 900 1000
Generation
Distribution of the Kalman time consumption.
18% T T T T
16% q
14% | E
12% B
0
— 10% | .
3
S 8% B
6% B
4% | 4
2% B
0% L L

0.0001" 0.0002" 0.0003" 0.0004" 0.0005"
Time consumed

Figure 1: Behavior of the Kalman filter (see text for details)

Kalman consumption over GA.

Time
consumed
N 800%
800% 700%
700% 600%

600% 500%
500% | y 400%
a00% | o
300% 100%
200% 0%
100% |

0%
506 350

50 .
Generations

Figure 2: Kalman procedures CPU consumption over GA’s

filter is several times bigger than that spent on GA even for such a simple problem (in terms of
assets number). This justifies our first implementation as will be discussed in the next section.

The problem size of the previous example, although feasible on a single workstation it is far
from real world problem sizes where a large number of stock options must be considered, and
where the time series are much longer too. The computational power needed to solve realistic use
cases within few minutes must, then, be found on a grid infrastructure.

In the next section we will discuss the technical implementations we adopted when porting the
application to the EGRID computational grid. This infrastructure is mainly based on EDG/LCG
middleware: it is a collection of Computing Elements (CEs) that maintain job queues to Worker

7773



Real-time grid computing for financial applications Stefano Cozzini

Nodes (WNs5) that actually carry out the computations (either serial or MPI based). Storage Ele-
ments (SE) supply data persistence services. CEs and SEs are monitored by an Information System
(IS). The Resource Broker (RB) represents the heart of the middleware: it identifies the most suit-
able CE for a job by querying the IS; it then submits the jobs; and finally it takes care of all the
associated data management operations. As far as the end-user goes, commands to interact with
the grid are collected in the User Interface software (UI) that can be easily installed on almost any
Linux machine.

3. Technical implementation

We implemented different technical solutions for our application following a trial and error
aproach. We will now briefly review all of the attempts.

All implemented solutions rely on a job reservation mechanism: grid resources are allocated
in advance to eliminate latency due to the grid’s job submission mechanism. In this way as soon as
there are enough resources allocated, interaction can take place in real time. The drawback is that
since it is an advanced booking strategy, when the underlying grid services are of a best effort type,
it could be unfeasible. For this experimental work it is not important though, but the limitation
should be taken into account when approaching production runs.

The booking mechanism has been implemented by running an early job submission that se-
cures the availability of WNs at any subsequent time. Each node that gets pooled in this way, runs a
program that regularly checks a specific host (usually the UI, but not necessarily). That host enrolls
the calling WN as a computational resource for a user’s program, as soon as the user executes that
program. Therefore when the program ends the results are available without the delays introduced
by WMS of the grid: they are available in real time. Since the WNs remain booked, they are ready
to be enrolled again for other program executions, eventually being freed by the user.

This approach, where the WN asks to be enrolled in a computation thereby acting as a client,
is needed because WNs cannot be reached directly from an external host (for example from the
uUD.

3.0.1 A first implementation: master/slave paradigm

The first, naive, implementation is simply based on the observation that the overall time taken
by the Kalman filter is much larger than that taken by the GA (see figure 2). The idea is therefore
to implement a master/slave paradigm where the master running on the Ul outside the grid, takes
care of generating individuals that will then be distributed to the grid WNSs, to be evaluated by the
Kalman filter. So each WN receives some load to process.

This approach, despite its simple implementation that still preserves the serial nature (and
therefore obtains identical results to the stand alone application) has the main advantage of being
dynamic: simulation can start with just a single WN but later on, when other resources become
available and can contribute to the execution, the master can easily leverage the newly freed com-
puting power.

It has some severe limitations in terms of network overhead: copying data between the Ul and
the WN is quite slow and does not scale at all. Data transferred back and forth increase linearly with
the size of the problem. Moreover there is a large network latency overhead due to the fact that a

77/4



Real-time grid computing for financial applications Stefano Cozzini

transfer takes place each time a Kalman filter evaluation is performed. Even if Kalman evaluations
can be grouped together for each processor, latency associated with each of these groups makes the
approach unfeasible. Overall, then, a new algorithm is needed.

3.0.2 A better approach: the isles algorithm

In this second approach we modified the algorithm parallelizing the GA step as well. Our
approach is now to have N independent Genetic pools, the so called isles. At a fixed number
of generations the isles exchange in a round-robin way their individuals: for example isle I will
receive (N-1)/N of the population, coming from the remaining N — 1 isles. Only 1/N of the original
population remains unchanged after this operation, which we define migration.

Both the GA and Kalman filter steps are now independently run on each isle (that is on each
WN), all with different seeds for ensuring distinct solutions. Network overhead is greatly reduced:
any remaining communication happens once in a while and it is a global operation among isles.

The main problem we faced was how to make each of the allocated WNs aware of the others,
since their hostnames were not known in advance. This was solved by having each WN contact the
UI for transmission of the respective hostname. The Ul then broadcasts back the complete list of
hostnames, once the right number of WNs has communicated its hostname. Communication can
now take place between WNs through usual sockets.

There is an evident limitation in the case of heterogeneous grid environments. When a mi-
gration takes place there’s a barrier on all isles that limits the computation’s speed: the slowest
machine must be waited for.This can be easily solved by implementing an algorithm that starts
migrations at specific times instead of waiting for a specific number of generations to be reached.
Migrations are, therefore, carried out at predetermined time intervals.

At the end of the simulation a WN receives the best solutions from the other ones and tries
to connect to a computer with a resolvable hostname (usually the UI), supplying the user with the
final results in real-time.

A more complex limitation arises from the fact that a doubling of computational power is not
likely to yield as much a gain in solution quality, with respect to the first algorithm. This is so,
not withstanding the fact that the isle approach mitigates the natural tendency of GA to evolve too
homogeneous populations, which then tend to get stuck in local minima.

This approach could also be implemented using MPI but we consider our solution superior
because it preserves the dynamic nature of the first one (this is not easily done with MPI). Moreover
it can be executed on any grid facility and not just on the ones where MPI is supported.

3.0.3 The third approach: the continent algorithm

Since WNs belonging to different grid sites cannot communicate, the above algorithm is lim-
ited to a single site: i.e. all the reserved WNs must be in the same grid site. To overcome this
limitation we implemented a third approach where one or more resolvable hosts outside the grid,
act as a bridge among different grid sites for receiving and sending data. We identify all the isles
belonging to the same grid site as a continent. Within each continent there is only one WN that can
communicate with the bridge: it is this isle that after each migration on its continent, swaps its new
generation with that of a peer in another site, through the bridge.

7M°75



Real-time grid computing for financial applications Stefano Cozzini

Isles and continents algorithms
800"

All nodes are continents '+ ' ' ' ' ' T
y=354.94*x+18.53 -~

. All nodes are isles X
700" - =336.55 T

Single host e;ecution 77777

600" - ) i

500" - .

Inter cluster communication overhead

X X X

Total time/CPU
IS
o
o
T
+
iy
L

Private network overhead

200" - 1

Single host execution: no penalty
100" 1

o" 1 1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18 20
Nodes

Figure 3:

This approach again introduces a network bottleneck (since the communication among conti-
nents is done on the public network and increases linearly with the number of sites), but it makes
available a much larger number of resources. Moreover the reduced data transfer between different
continents (we exchange just a population belonging to one isle) guarantees that the network delay
will remain limited to a manageable level.

To test the performance of this strategy we carried out a simulation where all allocated nodes
behaved as separated continents, exchanging data through the previously described mechanism.
We compared it to the isle strategy, as well as to the serial one (see figure 3): a realistic simulation
is very likely to behave in an intermediary fashion since only a few (10% or less) WNs will transfer
data through the bridge host in the public network, while the remaining ones communicate in a
high performance local network.

4. Conclusions

We took a stand alone application that run on a single processor computer and after several
trials we were able to grid enable it. We overcame many difficulties bypassing the infrastruc-
ture’s limits and we came up with essentially two approaches: a master/slave paradigm, and the
isles/continent idea. Both approaches used advanced booking of resources to allow real time com-
putations to take place.

The first one turned out to be non-performant because of the cheap computational cost of a
single Kalman filter procedure; still, we feel that it could be used as a building block inside other
algorithms with computationally more expensive evaluation functions. A very attractive feature
is its dynamic nature which, unlike MPI, allows the addition of extra computing power on the fly
as more WNs become available. Moreover our specific application allows such addition of extra
power to occur while it is running.

The second approach was developed to allow both intra-site and extra-site communication. For
direct internal communication, a foreign host such as the UI receives from all WNs their respec-

77/6



Real-time grid computing for financial applications Stefano Cozzini

tive hostname; the complete list then gets broadcast back, allowing WNs to communicate directly
among themselves. For external communication, a foreign host acts as a bridge. These important
communication functionalities were achieved while maintaining the dynamic features of the first
approach.

References

[1] www.egrid.it

[2] S.D’Addona and M. Ciprian, submitted to this conference

M7



