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Monte Carlo Grid and VaR Gianluca Fusai

1. Introduction

Institutions are frequently faced with problems of data processing that request a very high
computing power that is not matched by any individual available computing system. Neverthe-
less, such processing power limit could often be reached and even exceeded coordinating several
systems, even already available at their sites, through a Grid Computing Architecture.

A Grid computing Architecture is characterized by large-scale sharing and cooperation of
dynamically distributed resources, such as CPU cycles, communication bandwidth, and data, to
constitute a computational environment. A grid’s dynamic environment consists of procedures
that can be split into a high number of tasks which can be executed independently on different
computing nodes.

The aim of the present paper is consider a standard financial problem such as the computation
of the Value-at-Risk (VaR) of a portfolio using a full Monte Carlo . This problem is computationally
very intensive, because it consists in the re-valuation of hundreds of assets under several different
market scenarios.

Therefore, we will examine how the computations can be based on Avanade Grid Based Ar-
chitecture (AGA.NET), an application architecture which is able to facilitate the implementation
and execution of distributed processing. AGA.NET splits applications into a high number of tasks
that can be executed independently on different computing nodes (see Figure 2).
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Figure 1: Avanade Grid Architecture

The intrinsically parallel aspect of Monte Carlo applications makes them an ideal fit for the
grid-computing paradigm. In general such an application, divided in tasks (basic unit of work) can
be submitted to the scheduler service and assigned to the best computing node chosen according
to an heuristic routine called the matching algorithm. A central service (named monitor) will be
constantly monitoring the execution of the tasks at the computing nodes by periodically checking

P
o
S
(
G
i
F
2
0
0
6
)
1
5
3

153 / 2



P
o
S
(
G
R
I
D
2
0
0
6
)
0
1
0

Monte Carlo Grid and VaR Gianluca Fusai

their status to verify that everything is going as expected. In particular, this service will check that
processing time does not exceed a limit assigned by the scheduler for a given type of task, that
every computing node is sending its own heart beat (polling) with the expected frequency, that the
time since the last checkpoint in the task (checkpoints should be defined for complex long running
task) does not exceed a specified limit, and finally that computing nodes take ownership of tasks
that are assigned to them within a specified amount of time since the assignment by the scheduler.
The definition of checkpoints within tasks and the persistence of tasks’ state at every checkpoint
enable to resume the tasks from a last good known checkpoint rather than from the beginning, thus
saving time and computing power.

In Section 2 we formulate the problem and the two solutions that are commonly used in prac-
tice: Monte Carlo simulation and delta-gamma approximation with Fast Fourier Inversion (FFT).
In Section 3 we present the grid computing technology. In Section 4 we describe the Monte Carlo
Full Evaluation Application Architecture. In Section 5 we illustrate preliminary results and possi-
ble future researchs.

2. Value at Risk computation

In this section we will discuss the implementation of the Monte Carlo simulation with the
aim of measuring the risk of a complex portfolio over a time horizon dt. The risk measures we
are interested in are the loss probability given a thresold x and the portfolio’s Value at Risk (VaR)
at a given confidence level α , VaRα (t, t +dt). The loss probability refers to the probability that
the portfolio loss will be greater than x. The VaR of a portfolio is defined as the loss which, with
a certain probability α , will not be exceeded. If the probability distribution FL (x) of the loss is
known, then the VaR is its 1−α quantile

1−α = FL (VaRα (t, t +dt)) ,

and then, assuming that FL is strictly increasing

VaRα (t, t +dt) = F−1
L (1−α) (2.1)

The time horizon dt and the confidence level α are the two major parameters that should
be chosen in an appropriate way in relation to the overall goal of risk measurement. The time
horizon can differ from a few hours for an active trading desk to a year for a pension fund. When
the primary goal is to satisfy external regulatory requirements, such as bank capital requirements,
the quantile is typically very small (for example, 0.1% or 1% of worst outcomes). However for
an internal risk management model used by a company to control the risk exposure the typical
number is around 5%. The two measures can be used by financial institutions to assess their risks
or by a regulatory committee to set margin requirements. In either case, VaR is used to ensure that
financial institutions can still be in business after a large market crash.

VaR provides a common measure of risk across different positions and risk factors. It can be
applied to any type of portfolio and enables us to compare the risks across different portfolios, such
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as fixed-income and equity. Traditional methods are more limited: duration and convexity measures
apply only to fixed-income positions, sensitivities such as the Greeks apply only to derivatives
positions, portfolio measures apply to equity and similar positions such as commodity, and so
forth. Additional important aspects that makes the VAR an important tool in risk management are:
it allows one to aggregate the risks of positions, taking account of the ways in which risk factors
correlate with each other, it takes full account of all driving risk factors, whilst for example Greek
measures look at risk factors only one at a time. It focuses assessment on a complete portfolio
and not just the individual positions in it1. A general introduction to VaR can be found in Pearson
(1996), Jorion (1997) and Dowd (1998).

The estimation of VaR requires the knowledge of the loss distribution. This can be simulated
using Monte Carlo scenarios. However, a financial institution may have thousands of outstanding
loans and therefore the simulation of a large number of risk factors and revaluation of the portfolio
for each simulation, computation of the loss distribution and detection of the desired percentile is
usually reputed expensive. Avanade Grid Architecture makes possible to perform a Full Monte
Carlo portfolio revaluation: since the calculations that occur in each simulation are independent,
the Monte Carlo method can exploit parallel computation very effectively. However, the proce-
dure will still be computationally burdensome for some complex derivatives that cannot be valued
analytically and require intensive numerical computations2.

The accuracy of the resulting VaR estimate is primarily a function of the number of Monte-
Carlo trials performed, although elegant methods to increase accuracy are available, such as control
variates and importance sampling; for a review see Glasserman (2000).

The portfolio under examination represents a sample of real trading positions of a middle-
sized Italian bank and contains assets with several exotic features. Our sample is composed of 200
assets, depending on 40 risk factors, 18 for interest rate sensitive products and 22 stock prices. In
particular, we can distinguish:

a. 100 corporate bonds with different optional characteristics (caps, floors, swaptions, constant
maturity swaps, callable, etc.) and different maturities, ranging from a few months to up to 30 years.

b. 100 exotic products written on 22 different assets belonging to the EuroStox index.
All the assets in the portfolio are priced in the Black-Scholes framework. The Monte Carlo

procedure for full revaluation consists of three steps: Setup, Simulation and Analysis of the results.
The assumed time frame is 10 days: after simulating the risk factors we reprice the entire portfolio.
The three steps are descripted here below.

Setup
1. Identification of the risk factors. The relevant risk factor have been identified in spot rates

with different maturities (3m, 6m, 9m, 1yr., 2yrs., 3yrs., 4yrs., 5yrs., 6yrs., 7yrs., 8yrs., 10yrs.,
12yrs., 15 yrs., 20 yrs, 25 yrs and 30 yrs) and in 22 different assets belonging to the EuroStox
index.

1However, the VaR measure does not satisfy some natural property, such as subadditivity. This means that the risk of
the total position is less than or equal to the sum of the risk of individual portfolios. Other measures have been proposed
in the literature to face such problems, such as expected shortfall, i.e. the average loss in states beyond the VaR level.
For a discussion see Artzner et al. (1999). See also Meucci (2005) for a more in-depth analysis.

2This is the case for example of American options on a basket of assets.
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2. Estimation of the 40x40 covariance matrix of the absolute variations of the risk factors. In
particular, we have at first estimated separately the sub-matrices with reference to the two set of
risk factors. The covariance matrix in the stock market has been estimated shrinking the sample
covariance matrix towards the identity matrix, as suggested in Ledoit and Wolf (2003) and in
Meucci (2005)3. Then, we have estimated the covariances relative to the two set of risk factors
assuming a constant correlation. This correlation has been estimated with reference to the EuroStox
index and to an index constructed as arithmetic average of spot rates with different maturities.

3. Given the short horizon of VaR calculations, it is a standard assumption that the risk factors
jointly evolve according to a multivariate Brownian process

df(t) = µ∆t +SdW(t) , (2.2)

where df(t) is the 40x40 vector representing the stochastic shocks to the different risk-factors,
µ is the expected instantaneous variation of the risk-factors, S is the covariance matrix estimated
according to the procedure described above, and dW(t) is the vector containing the independent
Brownian motion increments. An additional and standard simplification, given the usual short
horizon, consists in setting the drift vector µ equal to 0.

Simulation
The steps involved in the simulation are the following:

1. Computation of the Cholesky factorization of the covariance matrix S, i.e. find a lower
triangular matrix A such that AT A = S;

2. Generation of n independent Gaussian random variables, ε.

3. Generation of correlated random numbers setting η = Aε

4. Update the values of the risk factors using

f(t +∆t) = f(t)+η
√

∆t

5. Revaluate the entire portfolio and compute the portfolio loss over the time frame (t, t +∆t)

L = Π(t, f)−Π(t +∆t, f+df) .

where Π(t, f) is the portfolio value at time t. In the revaluation step, we also include a calibration
of the simulated term structure of spot rates using the Nelson-Siegel parametric functional form.

6. Repeat steps 2-5 N times and denote by Li, i = 1, ...,N, the portfolio loss generated in the
i-th simulation.

Analysis
Given the results of the simulations, we estimate the portfolio’s Value at Risk at a given confidence
level α , VaRα (t, t +dt).

1. The portfolio Value at Risk can be computed ordering in increasing order the realised loss
values Li, so that we compute the order statistics of the samples

L(1) ≤ L(2) ≤ ...≤ L(N)

3This procedure consists in taking a weighted average of the sample covariance Ŝ and a preassigned target matrix.
As target matrix we have considered the matrix λ̄ In, where In is the identity matrix of order n, n = 40, and λ̄ is given by
tr

(
Ŝ
)
6 /n , and tr

(
Ŝ
)

represents the trace of the matrix Ŝ. The optimal shrinkage weight is given in Meucci (2005, pag.
208).
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with L(1) being the sample minimum and L(N) the sample maximum. The VaR estimate is

V̂ aRα (t, t +dt) = L([(1−α)N]),

where [x] is the integer part of x.
2. We are also interested in quantifying the accuracy of our VaR estimate. We can use a

asymptotic result4 from the statistical literature (e.g., Cox and Hinkley, 1974, Appendix 2). Let
us denote by ζ1−α the true 1−α quantile of the loss distribution. Then V̂ aRα is asymptotically
normal with mean ζ1−α and variance α(1−α)/

(
N[ f (ζ1−α)]2

)
, that is

V̂ aRα ∼N

(
ζ1−α ,

α(1−α)
N f 2(ζ1−α)

)
,

where f (x) represents the loss density. This result requires the knowledge of the density function
at the quantile ζ1−α , i.e. f (ζ1−α). To this aim we have applied a two step procedure. At first,
we estimate the density f with a locally adaptive smooth estimator, assigning a probability mass of
1/(N +1) to each interval (L(i),L(i+1)), see Collings and Hamilton (1988) and De Martini (2000).
Then we denote by f̂L,N and F̂L,N the empirical density and distribution functions, and we let ζ̂1−α =
F̂−1

L,N(1−α) to be the percentile estimated through the smoothing technique and we obtain for a
given q: ∫

ζ̂1−α+q

ζ̂1−α−q

f̂ (x)dx = 2q
N

N +1
.

Then, we define a further smoothed density f̃ by setting:∫
ζ̂1−α+q

ζ̂1−α−q

f̂ (x)dx =
∫

ζ̂1−α+q

ζ̂1−α−q

f̃
(

ζ̂1−α

)
dx = f̃

(
ζ̂1−α

)
(ζ̂1−α+q− ζ̂1−α−q),

and we finally have

f̃
(

ζ̂1−α

)
=

N
N +1

2q

(ζ̂1−α+q− ζ̂1−α−q)
.

We apply this formula setting q = 0.2(1−α). However, the normal approximation may not be
sufficiently accurate for estimating tail quantiles or probabilities if the number of simulation is
not large or if the loss distribution is highly skewed. Moreover, for values of α close to 1, a
relatively large number of simulations is required to attain an acceptably accurate estimate of the
desired quantile. For this reason, we consider a different procedure that computes a confidence
interval for ζα using a Bootstrap Percentile Method, see for example Efron and Tibshirani (1993).
This consists in drawing with replacement a sample of size N from the original sample, and in
computing the estimate of the percentile of interest, say ζ̂ ∗1−α

, on the basis of this re-sample. Then,
the confidence interval of level 1− γ for ζ1−α , is given by the percentiles γ/2 and 1− γ/2 of the
distribution of ζ̂ ∗1−α

. In practice, by applying a Monte Carlo technique, we repeat this sampling m
times (in practice m = 5000), correspondingly obtaining the m estimates ζ̂ ∗b

α , b = 1, ...,m. Finally,
the confidence interval of level 1− γ for ζ1−α is given by the percentiles γ/2 and 1− γ/2 of the
empirical distribution of ζ̂ ∗1−α

.

4For a general review of asymptotic approaches to quantile estimation see Ma and Robinson (1998).

P
o
S
(
G
i
F
2
0
0
6
)
1
5
3

153 / 6



P
o
S
(
G
R
I
D
2
0
0
6
)
0
1
0

Monte Carlo Grid and VaR Gianluca Fusai

2.1 Delta-Gamma approximation

We compare Monte Carlo simulation estimates with the results coming from the delta-gamma
approximation. This second alternative is based on approximating the changes of portfolio values
using a second order Taylor expansion

−L(t, t +∆t) = Π(t +∆t, f+∆f)−Π(t, f)≈Θ∆t +δ
T

∆f+
1
2

∆fT
Γ∆f≡ Q

,
where Θ = ∂V/∂ t is the first order sensitivity of the portfolio value with respect to time (theta),
∆ is the vector with components δi = ∂V/∂ fi and Γ is the square matrix with components Γi j =
∂ 2V/(∂ fi∂ f j) . In other words ∆ and Γ collect the first and second order sensitivities of the
portfolio value with respect to changes in the underling risk factors, i.e. the vector of portfolio
deltas and the matrix of gammas5. The characteristic function of the quadratic approximation Q,
given the assumption of normality of risk factors, can be computed in closed form, see for example
Mathai and Provost (1992) or Glasserman (2000). Then an application of the FFT algorithm6

yields the entire distribution of the portfolio loss, so that we can compute the loss probability and
the VaR. This approximation is expected to perform well for portfolios with stable “Greeks” delta
and gamma. This is not the case, with short maturity ATM options or options with discontinuous
payoffs like digitals and barriers. Indeed, for these options the Greeks can change abruptly near the
discontinuity points. In our implementation the sensitivities were computed numerically. Important
contributions on the delta-gamma approximations include Cardenas et al. (1997) and Rouvinez
(1997).

3. Grid Computing Technology

The introduction of Grid Technology has enabled the approach to numerical intensive comput-
ing procedures at a reasonable cost. At the same time, the acceptance of collaborative computing
and Web based technologies has opened the door to a wide number of industry specific applications
and servers, many of which running on Intel based low cost machines. As a consequence it is quite
common to see large Institutions with hundreds or even thousands Intel based servers: it means
availability of large, but often heterogeneous and fragmented, computing power.

The ability to fully leverage the available computing power is relevant for a Grid technology
in order of resulting performances. Nevertheless performances can also be affected by the appli-
cation itself: efficiency of the implementation or quality of code may impact performances adding
overhead on a single batch of work to be distributed across multiple machines.

5The computation of the Greeks can be done analytically for many contracts. However, if our portfolio include
path-dependent exotic options, having American or Asian features, the computation of the sensitivities can become
quite expensive and require Monte Carlo simulation. For a discussion on the numerical computation of the Greeks see
Glasserman (2000).

6The FFT algorithm has been implemented using the fractional Fast Fourier algorithm, with 216 points. By this
approach both the grid spacing of the density function and the sampling frequency of the characteristic function can be
chosen independently. For details see Chourdakis (2004).
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Distributing pieces of work across systems on a complex scenario is an orchestrated operation
where achieving expected results at the appropriate time is fundamental. In an orchestrated envi-
ronment a slower computing component could slow the end operation of an entire batch of work. It
becomes therefore critical the ability to perform tasks in the expected time by fully exploiting the
underlying Grid infrastructure, both at hardware and software level.

From the architecture point of view, it should be distinguished between central services func-
tionalities and computing node functionalities. Central services functionalities can be set from the
central administration console and have direct impact on the global behavior of the grid: matching
algorithm, ranking algorithm, machine group virtual partitioning, task tuning, resuming from last
known good checkpoint.

Computing node functionalities, instead, must be set on a per node basis and allow config-
uration of local policies on nodes: node responsiveness, node tuning, node virtualization, node
manageability.

Through the matching algorithm the right task is being run at the right computing node: when
one specific task is required from within the admin console a specific hardware platform, proper
software requirements can be specified to find only those nodes capable to run it.

The maximum number of tasks running at a node and the maximum task load for a specific
node should be key parameters in every grid administration console. An evaluation of every single
task weight must necessarily be accomplished to train the task load mechanism.

Data is gathered from computing nodes by sending their status to the central scheduler ser-
vice on a regular basis: the scheduler then executes a query back on the node information central
database filtering out only relevant information. Computing node services typically perform two
main duties: gathering data on their status and sending them to central services, checking central
services for newly assigned task. The frequency by which a computing node executes this service
task is adjustable and is a key parameter to influence the responsiveness of the whole scheduling
process.

Finally, mechanisms for sending control signals to out of control or too much demanding
tasks should be always provided in non-dedicated production environment to guarantee the fully
manageability of grid system in all operating conditions, and also CPU scheduling priority of tasks
should also be set to prevent impact on normal working activities.

In the very common scenario where machines of different hardware classes coexist in the same
physical Grid, the possibility of virtual partitioning into groups of similar performing computing
nodes is a very efficient way to optimize the execution of tasks. Geographic distribution and com-
puting power are typical criteria in a virtual sub-grid scenario.

In a large and heterogeneous grid environment it may happen that some of the nodes have
a failure: reassigning the task from failing nodes is an intrinsic feature in every grid technology
but the possibility of saving what has already been done can save a huge amount of CPU cycles.
Saving processing state should be possible in the central database so that, in the case of one node
failure, the newly assigned computing node can resume from the last known good checkpoint state
successfully saved by the failing node.

It is strongly advisable that grid task programming techniques are equipped by a powerful set
of APIs to manage the whole life-cycle of tasks.
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A full portfolio revaluation method adds more levels of complexity that impact performances
by orders of magnitude. Properly orchestrating the distribution of work requires an efficient distri-
bution strategy and application architectural implementation.

4. MCM Full Revaluation Application Architecture

MCM Full Revaluation presented here is the .NET application based on the AGA framework.
Although AGA is available for both Linux and Windows systems, the solution presented here is
the SOA architecture implemented on the Microsoft platform. The conceptual design is shown in
Figure (2).

FullR
evaluation

A
rchitecture3.pdf

Figure 2: Avanade Grid Architecture

4.1 UI Service and presentation layer

Simulation monitor:
This web based application provides the functionalities to monitor the status of a simula-

tion required by the user.
Simulation client (on the same web portal front):

P
o
S
(
G
i
F
2
0
0
6
)
1
5
3

153 / 9



P
o
S
(
G
R
I
D
2
0
0
6
)
0
1
0

Monte Carlo Grid and VaR Gianluca Fusai

This web application provides functionalities to start a simulation (revaluation) over a
portfolio.

Portfolio Composer and Deployment:
This Windows Based client provides a rich UI to define a portfolio, including portfolio

risk factors (rates, assets etc.).

4.2 Process Services Layer

Simulation Control Service:
This service provides simulation functionalities control: it runs a new simulation, it

checks for completed simulation, it aborts a running simulation, it collects and retrieves data.
Statistical Analysis Service:

This service provides all statistical functionalities required to create the final simulation
report based on simulation data: it includes the VaR calculus algorithm.

Portfolio Deployment Service:
This service provides functionality to compile and deploy a high performance configured

portfolio into the system.

4.3 Data Services Layer

This layer supports all data access required for the system

4.4 Portfolio GRID Task

This component manages the Monte Carlo simulation based on the following modules:
Parallelism and workload strategies
This module provides functionalities to support multi CPU and multi machine environment in

order to split the workload of a simulation on all resources available on the grid.
Portfolio evaluation procedures
This module provides the functionalities for the main computation of the portfolio value and

includes the following blocks:
Monte Carlo:

Module for Monte Carlo implementation for running the simulation and saving the partial
data.

Pricing:

Application modules for the evaluation of specific class of portfolio instruments, such as:
Corporate (Fixed Income and Structured Note), Plain Vanilla and Exotic Options, Path Dependent
Option (Asiatic).

Variance Reduction Method

This block provides functionalities to reduce the variance of the evaluation in order to
reduce the number of simulations required.

Basic calculus function library
These modules include all basic financial evaluation function such as Nelson-Siegel, Black

formulas or other pricing functions.
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4.5 MCM Full Evaluation Use Cases

From the user’s point of view, MCM Full Evaluation supports three main use-cases, Portfolio
Configuration and Deployment, Portfolio Evaluation, Portfolio Simulation Data Analysis.

4.5.1 Portfolio Configuration and Deployment

This use-case includes all functionalities for the configuration and deployment process. Inputs
for a portfolio configuration are financial instruments attributes, risk factors, risk measurement
attributes. Portfolio data are saved as XML.

Figure 3: Processes overview.

The deployment process reads the portfolio XML configuration and generates the package
binary code. The generator selects the evaluation formula for each portfolio instrument from the
price model library and produces the module source code.

The module contains the portfolio data: risk factors, pre-processed input such as the Cholesky
matrix from the variance-covariance matrix and the instruments evaluation functions.

Finally, the generator module compiles the source code and produces a .NET assembly (the
package binary) ready to be deployed in the Portfolio Repository.

Portfolio evaluation versioning is supported, meaning that a single portfolio can be evaluated
with different instruments/risk factors attributes and composition.
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Portfolio Deployment

Read
Configuration

Generate
Code

Asset
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.NET
Assembly
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Binary

Portfolio Configuration
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Portfolio
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Figure 4: Portfolio configuration and deployment.

4.5.2 Portfolio Evaluation

This use-case is composed of three main processes, run new simulation, run simulation’s
events, consolidate final data.

Run new simulation Input simulation parameters are:
Calibration for Nelson-Siegel Model, number of simulations (emax), workload strategy tuning

parameters, min number of events per subtask (emin), max number of subtasks (Tm), checkpoint
every events (Cp), expected execution time (Te).

Outputs are: enqueued grid tasks where proper workload strategies should be applied.

Enqueue simulation strategy The strategy use the number of available grid nodes as initial
task number:

The number of events assigned to a task is:

ei =
emax

tasks

where tasks = number of available nodes.

Run simulation events The following processes are executed on the grid computing node:

Workload strategies A workload strategy is applied for the task to calculate the number of
events supported by the task on the machine while the task is running

ēi = Ncpu ·
Te

∑
m
j=1 Wj

CPUclock

,

P
o
S
(
G
i
F
2
0
0
6
)
1
5
3

153 / 12



P
o
S
(
G
R
I
D
2
0
0
6
)
0
1
0

Monte Carlo Grid and VaR Gianluca Fusai

where W j is the estimated number in mega cycles needed to calculate the jth titles in the portfolio,
CPUclock is the CPU speed in MHz of the computing node and Ncpu is the number of CPU on the
computing node.
The number of events per task is:

êi = min(ei, max(emin, ēi)) .

If the number of events calculated by the strategy for the current task is less than the number
of total event passed as input, than the remaining events are splitted in subtasks. The number of
subtasks is calculated using the following split strategy:

Nsubtask = max
(

1,min
(

ei− ēi

emin
,T m

))
Each subtask receives: ek = (ei− ēi)/Nsubtask events (rounded up).

This strategy is shown in Figure (5):

Run

Task 2 Task 3Task 1 Task i

Sub task 1- 1 Sub task 1-2 Sub task 1-k

Sub task 1-k-1 Sub task 1-k-2

tasks

su
bt
as
ks

Figure 5: Workload strategy.

Execution Strategy The execution task uses a thread pool to parallelize the computation
over multi CPU (multi core), and each single event is set on a queue spooled by a thread pool.

A thread on the threads pool dequeues the events and evaluates the portfolio.
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Evaluate event (portfolio evaluation) To evaluate a portfolio for a specific event the task
engages different pricing modules, such as Corporate (Fixed Income, Structured), Plain Vanilla,
Exotic Options, Path Dependent Option, or eventually other modules.
For each module the same process is performed:
1. Generate random normal variables

The architecture is designed to choose the best random generator according to the environment
where it runs (grid, process, thread).
2. Apply Cholesky factor to variables

The Cholesky factor is part of portfolio configuration and is deployed with it.
3. Apply price function

The applied pricing function depends on the calculus module and the instrument type and
configuration. The function used is part of portfolio configuration and is deployed with it.

Checkpoint strategy During each task evaluation a checkpoint is performed by the AGA.
The checkpoint feature is useful in case of failure: it allows the task to save partial data used to
resume from the last know good execution point (last event successfully evaluated and saved). The
check point strategy works as follows:
Save partial data: Each evaluated event result (value of portfolio calculated for the event) is saved
in memory. If the number of evaluated events from the last checkpoint is equal to Cp, than the task
saves all the calculated values for all completed events in theAGA data structure to support restart
in case of failure and in the portfolio repository as partial data.
Save final data: All completed events are saved in the portfolio repository, marked as non-partial
data, and sorted.

Consolidate final data The portfolio evaluation process ends when all tasks posted on grid, in-
cluding subtasks, are finished. To consolidate data the process collects all data produced by the
workload strategy application, sorts the entire collection of data and saves data for analysis.

4.5.3 Portfolio Simulation Data Analysis

The last use-case includes all functionalities to analyze the data produced by the simulation.
The analysis is performed on the sorted portfolio prices produced by the process Consolidate Final
Data. The analysis applies statistics functions to calculate VaR according to different confidence
levels.

5. Results and Conclusions

Our Grid environment test is composed, on purpose, of a quite heterogeneous set of machines
for memory size and clock speed, as shown in Table 1. The multiprocessor machine has been
configured as a 4 single CPU virtual node.

Thousands of financial instruments may be priced in seconds while processing a single instru-
ment with path-dependency features written on a basket of several assets may require days. The
availability of the appropriate information becomes therefore relevant for a proper capacity plan-
ning. To achieve an acceptable response time, an implementation of a full portfolio revaluation
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Name CPU Number Clock (Mhz) RAM (Mb)
SEMEQ-Server 4 2666 1024

SEMEQ-22 1 2144 512
AV01100526 1 1995 1024
AV01100525 1 1995 1024
AV01100516 1 1995 1024
AV01100515 1 1994 1024
AV01100522 1 1994 1024
AV01100520 1 1994 1024
AV01100523 1 1994 1024
AV01100524 1 1994 1024
AV01100083 1 851 512
AV01100042 1 751 384
AV01100046 1 747 384
AV01100043 1 747 256

Table 1: Machines involved in the Grid simulation.

method may require few to hundreds of systems. Therefore it is truly important to achieve the right
balance between available computing power and complexity of the algorithm required to evaluate
a single financial instrument.

Response time is less relevant. Indeed, it is the application architecture that enables an optimal
distribution of work based on the CPU power available. The overhead added by the grid infrastruc-
ture and by the portfolio full revaluation application (i.e. subtask dependencies) when distributing
work is in the order of 1.2 second per task, decreasing with computer nodes.

Financial instruments included in our portfolio are grouped in two main categories, Corpo-
rate and Options. The first portfolio contains interest-rate derivatives, such as zero-coupon bond,
corporate bond and constant maturity swap (CMS) with maturities ranging from 1 year up to 30
years. The second portfolio contains plain vanilla and exotic options on a single asset7 or on several
underlyings8. Table 2 reports the average clock cycles at the given frequency of 35.7 MHz of 200
different financial instruments .

The execution time is measured on a non dedicate Laptop (Dell D600 1 CPU Intel Centrino,
1,6 GHz, 1GBytes RAM) while other applications are running (e.g. Word, SQL Server, MS .NET
development environment). The measures are done by using an high resolution built-it hardware
timer with a frequency of 35.79545 MHz, every measure is repeated for 104̂ times.

The sixth column in Table 2 gives the CPU usage of every financial instrument respect to the
simplest one, a zcb with one year maturity. We can appreciate the different CPU usage for the
different groups of instruments. In our current work we have listed instruments that are taking
CPU up to 572 more times: if one second is needed for a certain instrument, up to 572 seconds
are needed for a different type of instrument. The impact could be even bigger if we look at a full

7Cash or nothing, Asset or Nothing, Gap, Forward Start, Supershare, Simple Chooser options
8Exchange options, two asset cash-or-nothing option, two asset correlation option, option on the maximum or the

minimum of two risky asset, complex chooser option.
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Financial Instruments Portfolio Maturity Number of Average Clock Cycles Times over
Percentage (years) Coupons at Freq.35MHz base

ZCB 0.50% 1 1 3,625 1,00
Corporate 20.00% 2-34 5,031- 58,313 1,39-16,09
(Floater & Fixed)
Corporate 13.00% 3-94 28,683-1130,226 7,91-311,79
(Floater with options)
CMS 8.00% < = 15y 3-38 49,891-2076,248 13,76-572,76
Corporate CMS 7.00% >15y 9-19 379,453- 1545,454 104,68-426,33
Plain Vanilla and Exotic 37.00% 0.90-15 4,601-20,942 1,27-5,78
Exotic on several 14.50% 0.50-2 25,934-253,514 7,15-69,93
underlyings

Table 2: Execution time for different derivative contracts.

spectrum of instruments.

The complexity degree of the algorithm used for a specific instrument evaluation impacts on
performance. If we consider a sample instrument and assume that a typical 60,000 instruments
portfolio is composed by simple derivative contracts, the processing of a 60,000 elements portfolio
may be performed in a short time on few machines. If we consider an Asian Option on a portfolio
of 22 assets with daily monitoring, portfolio revaluation can take even hours. Therefore, the mix
of financial instruments contained in the portfolio is a key factor influencing performances. This
also shows us how it becomes relevant to optimize the computation algorithms in order to reduce
response time and increase the quality of mathematical analysis. Grid computing offers a way to
achieve great capabilities but not infinite capabilities.

Figure (6) represents the distribution of the portfolio losses. Standard statistical tests reject the
normality assumption. Tables (3), (4), and (5) report the results of the Monte Carlo simulation and
comparison with the VaR measure computed according to the delta-gamma approximation. The
figures in the Tables refer to a time horizon of 10 days. Similar results have been obtained over a 1
month horizon, although the delta-gamma approximation deteriorates sligthly: higher probability
of larger moves in the risk factors can make the second order approximation less reliable. We
have computed the VaR measure for three different portfolios. The third portfolio is just the sum
of the two components. We found after aggregating the two portfolios a diversification effect:
the portfolio VaR is lower than the VaR of its components. Tables report also the VaR computed
according to the delta-gamma approximation. We observe that it always falls outside the 95%
confidence interval. The delta-gamma approximation should provide results even less accurate as
we consider non normal shocks, such as the ones generated by fat-tails distributions, or as we
include in our portfolio path-dependent assets. Indeed, for these derivatives the computation of
accurate delta and gamma sensitivities contracts present both theoretical and practical challenges,
(see the discussion in Glasserman (2000)).
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Corporate Portfolio (Initial Value: 96.237, Time horizon: 10 days)
Percentile 0.999 0.99 0.95

AN (3.492, 3.493) (2.600, 2.603) (1.790,1.800)
Bootstrap (3.473, 3.510) (2.600, 2.603) (1.790,1.800)

FFT 4.180 2.588 1.788

Table 3: AN: confidence interval using asymptotic normality. Bootstrap: confidence interval using the
bootstrap methodology; FFT: VaR estimate using the analytical delta gamma approximation.

Exotic Portfolio (Initial Value: 266.735, Time horizon: 10 days)
Percentile 0.999 0.99 0.95

AN (14.280, 14.283) (11.076, 11.088) (8.229, 8.263)
Bootstrap (14.208, 14.364) (11.110, 11.051) (8.227, 8.262)

FFT 13.770 10.701 7.977

Table 4: AN: confidence interval using asymptotic normality. Bootstrap: confidence interval using the
bootstrap methodology; FFT: VaR estimate using the analytical delta gamma approximation.

Global Portfolio (Initial Value: 362.972, Time horizon: 10 days)
Percentile 0.999 0.99 0.95

AN (13.502, 13.505) (10.510, 10.522) (7.770,7.804)
Bootstrap (13.446, 13.588) (10.486, 10.543) (7.770,7.803)

FFT 13.642 10.546 7.790

Table 5: AN: confidence interval using asymptotic normality. Bootstrap: confidence interval using the
bootstrap methodology; FFT: VaR estimate using the analytical delta gamma approximation.
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Figure 6: Loss Distribution for the three Portfolios.
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