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Monte Carlo is a powerful and versatile derivative pricing tool, with the main drawback of requir-

ing a large amount of computing time to generate enough realisations of the stochastic process.

However, since realisations are independent from each other, the task is “embarassingly” parallel

and the workload can be easily distributed on a large set of processors without the need for fast

networking and thus an expensive dedicated supercomputer. Such an alternative, much cheaper

and more accessible way can be realised with the BOINC toolkit, distributing the Monte Carlo

runs on networked clients running under Windows, Linux or various Unix variants, and recol-

lecting the results at the end for a statistical evaluation of the price distribution at the final time.

Though it is likely that the clients will belong to the intranet of a large company or institution, we

gave our program the evocative name City@home in honour of the paradigmatic SETI@home

project. As an application, we present the generation of synthetic high frequency financial time

series for speculative option valuation in the context of uncoupled continuous-time random walks

(fractional diffusion), with a Lévy marginal density function for the tick-by-tick log returns and

a Mittag-Leffler marginal density function for the waiting times. Lévy deviates are generated

with the Chambers-Mallows-Stuck method, Mittag-Leffler deviates with the Kozubowski-Pakes

method.
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1. Introduction

BOINC is an acronym for Berkeley Open Infrastructure for Network Computing [1]. It is a
software platform for distributed computing that uses volunteered computer resources freely avail-
able under an open source license for various operating systems including Microsoft Windows,
MacOS X, other Unix variants and Linux.

A typical PC spends most of its time doing nothing as it waits for user input or responses from
peripheral devices or the network. These computing cycles spent idle can also be used to execute
scientific calculations. While the spare computing capacity available from a single PC may be
small, the combined power from millions of PCs connected to the internet allows to form a virtual
supercomputer that can challenge the world’s fastest systems.

Problems best solved on such a configuration are what is usually described as “embarassingly
parallel”: one large task that can be divided into a significant number of smaller, mostly indepen-
dent calculations that can be completed by using the spare cycles of a single PC in a reasonable
amount of time, i.e. from a few minutes to a few days.

The inspiration for BOINC came from the University of California at Berkeley’s SETI@home
project, that was one of the first projects featuring large-scale distributed computing on volunteers’
PCs connected via the Internet. BOINC can be seen as a generalised platform based on the experi-
ences of the SETI@home project, whose pioneering role motivated our name choice City@home
for the particular application in mathematical finance that will be presented in the following.

2. Mathematical framework

2.1 Continuous-time random walks

Financial time series can be modelled phenomenologically as continuous-time random walks
(CTRW) [2, 3, 4], also called point or renewal processes with reward. We consider the series
of logarithmic returns x

�
t ��� log

�
S
�
t ��� S � 0 ��� of an asset price S

�
t � with respect to its initial price

S
�
0 � . A CTRW is a jump process subordinated to a renewal process. In a renewal process, two

consecutive events are separated by a random waiting time; events are a sequence of independent
and identically distributed (i.i.d.) positive random variables τi:

tn � t0 �
n

∑
i � 1

τi � τn � tn 	 tn 
 1 � n �� � t0 � 0 � (2.1)

The jump or reward process is a sequence of i.i.d. random variables ξi. Thus the position x of the
random walker at time tn � t � tn � 1 is:

x
�
t ��� x

�
0 � �

n

∑
i � 1

ξi � (2.2)

CTRWs are good and general phenomenological models for diffusion, including anomalous dif-
fusion, provided that the time of residence of the walker is much greater than the time it takes to
make a jump; actually, in this formalism jumps are instantaneous.
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In general, the jumps and the waiting times depend from each other, i.e. they have a joint
probability density ϕ

�
ξ � τ � , and the probability density p

�
x � t � for the walker being in position x at

time t, conditioned by the fact that it was in position x � 0 at time t � 0, is

p
�
x � t � � δ

�
x � Ψ �

t � �
� � ∞


 ∞

� t

0
ϕ
�
x 	 x � � t 	 t � � p

�
x � � t � � dx � dt � � (2.3)

The so-called survival function Ψ
�
τ � is related to the marginal waiting-time probability density

ψ
�
τ � . The two marginal densities are

ψ
�
τ � �

� � ∞


 ∞
ϕ
�
ξ � τ � dξ � λ

�
ξ � �

� ∞

0
ϕ
�
ξ � τ � dτ � (2.4)

and the survival function Ψ
�
τ � is

Ψ
�
τ � � 1 	

� τ

0
ψ
�
τ � � dτ � � � ∞

τ
ψ
�
τ � � dτ � � (2.5)

The integral equation (2.3) can be solved in the Fourier-Laplace domain ( �f � k ����� x � f � x ��� � k � �	 � ∞
 ∞ f
�
x � eikx dx ��
f � s � �� t � f � t ��� � s � � 	 ∞

0 f
�
s � e 
 st dt ):


 �p � k � s � � 1 	 
ψ �
s �

s
1

1 	 
 �ϕ � k � s � � (2.6)

In order to obtain p
�
x � t � , it is then necessary to invert its Fourier-Laplace transform 
 �p � k � s � . A

series solution exists for uncoupled CTRWs, where jump sizes do not depend on waiting times:

ϕ
�
ξ � τ � � λ

�
ξ � ψ �

τ � � (2.7)

with the normalisation conditions
	

λ
�
ξ � dξ � 1 and

	
ψ
�
τ � dτ � 1. In this case the master equation

(2.3) for p
�
x � t � becomes

p
�
x � t � � δ

�
x � Ψ �

t � �
� t

0
ψ
�
t 	 t � ��� � � ∞


 ∞
λ
�
x 	 x � � p

�
x � � t � � dx ��� dt � � (2.8)

This equation has a general explicit solution in terms of P
�
n � t � , the probability of n jumps occurring

up to time t, and of the n-fold convolution λn
�
x � of the jump density λ

�
ξ � :

λn
�
x � �

� � ∞


 ∞

� � ∞


 ∞
�����
� � ∞


 ∞
dξn 
 1dξn 
 2 ����� dξ1 λ

�
x 	 ξn 
 1 � λ

�
ξn 
 1 	 ξn 
 2 � ����� λ

�
ξ1 � � (2.9)

Indeed, P
�
n � t � is given by

P
�
n � t � �

� t

0
ψn
�
t 	 τ � Ψ �

τ � dτ (2.10)

where ψn
�
τ � is the n-fold convolution of the waiting-time density:

ψn
�
τ � �

� τ

0

� τn � 1

0
�����
� τ1

0
dτn 
 1dτn 
 2 ����� dτ1ψ

�
t 	 τn 
 1 � ψ

�
τn 
 1 	 τn 
 2 � ����� ψ

�
τ1 � � (2.11)

Its Laplace transform 
P � n � s � reads:


P � n � s ��� � 
ψ �
s ��� n 
Ψ �

s � � (2.12)
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By taking the Fourier-Laplace transform of Eq. (2.8), one gets:


 �p � k � s � � 
Ψ �
s � 1

1 	 
ψ �
s � �λ � k � � (2.13)

Since � �λ � k ��� � 1 and � 
ψ �
s ��� � 1, if k �� 0 and s �� 0, Eq. (2.13) becomes:


 �p � k � s � � 
Ψ �
s �

∞

∑
n � 0

� 
ψ �
s � �λ � k ��� n � (2.14)

This gives, inverting the Fourier and Laplace transforms and taking into account Eqs. (2.9) and
(2.10):

p
�
x � t � �

∞

∑
n � 0

P
�
n � t � λn

�
x � � (2.15)

Once the log-price density p
�
x � t � of an underlying is known, the pay-off density q

�
y � t � of an

option can be computed from p
�
x � T � at maturity t � T and from the pay-off function y � Π

�
x � T �

through the change of variable

q
�
y � T � � p �Π 
 1 � y � T � � T � ���� dx

dy

���� � (2.16)

E.g. for a plain vanilla call European option with exercise price E , the pay-off function is

y � Π
�
x � T � � max � exp

�
x
�
T ��� 	 E � 0 � � (2.17)

Knowledge of the function p
�
x � T � with parameters estimated from historic time series [5] allows

speculative option valuation [6] through the computation of the expected payoffs, Eq. (2.16).

2.2 Choice of waiting-time and jump marginal densities

For the marginal waiting-time density we chose ψ
�
τ � � 	 dΨ

�
τ ��� dτ , where Ψ

�
τ � is the

Mittag-Leffler survival function with order β � � 0 � 1 � and scaling parameter γ t :

Ψ
�
τ � � Eβ

�
	
�
τ � γt � β � �

∞

∑
n � 0

�
	
�
τ � γt � β � n

Γ
�
βn � 1 � � (2.18)

For the marginal jump density we chose a Lévy function with index α � � 0 � 2 � and scaling parameter
γx:

λ
�
ξ � � Lα

�
ξ � � � 
 1

k � e 

	 γxk � α � � ξ � � 1
π

� ∞

0
e 
	 γxk � α cos

�
ξ k � dk � (2.19)

Thus jumps and waiting times are i.i.d. variables, and solving Eq. (2.15) for the density one gets:

p
�
x � t � �

∞

∑
n � 0

�
t � γt � βn

n!
E 	 n �

β
�
	
�
t � γt � β � λn

�
x � � (2.20)

This density can be computed exactly in the special case of the normal compound poisson process
(NCPP), where α � 2 and β � 1. With β � 1 the marginal waiting-time density becomes an
exponential with µ � 1 � γt :

ψ
�
τ � � µe 
 µτ ; (2.21)
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with α � 2 the marginal jump density becomes a normal with σ ��� 2γx:

λ
�
ξ � � 1

� 2πσ
e 
 ξ 2 � 2σ2 � (2.22)

The probability P
�
n � t � of n jumps occurring up to time t is a Poisson distribution e 
 µt � µt � n � n! and

the n-fold convolution λn
�
x � of the jump density is another normal with standard deviation � nσ ,

leading to the density

p
�
x � t � � e 
 µt

∞

∑
n � 0

�
µt � n
n!

1

� 2πnσ
e 
 x2 � 2nσ2 � (2.23)

Given the above choice of the marginal density functions, in the diffusive limit, i.e. h � 0 and
r � 0 with the scaling relation hα � rβ , the CTRW density ph � r � hx � rt � converges to u

�
x � t � , solution

of the following fractional diffusion problem [7, 8] with diffusion coefficient D � γα
x � γβ

t :

∂ β

∂ tβ u
�
x � t � � D

∂ α

∂ � x � α u
�
x � t �

u
�
x � 0 � � � δ

�
x � � x � � 	 ∞ � � ∞ � � t � 0; (2.24)

dα f
�
x ��� d � x � α � � 
 1

k � 	 � k � α �f � k ��� � x � is the Riesz space-fractional derivative of order α � � 0 � 2 � ,
dα

d � x � α f
�
x � � Γ

�
1 � α � sin

�
απ � 2 �
π

� ∞

0

f
�
x � ξ � 	 2 f

�
x � � f

�
x 	 ξ �

ξ 1 � α dξ � (2.25)

and dβ f
�
t ��� dtβ � � 
 1

s � sβ 
f � s � 	 sβ 
 1 f
�
0 � ��� � t � is the Caputo time-fractional derivative of order

β � � 0 � 1 � ,
dβ

dtβ f
�
t � � 1

Γ
�
1 	 β � � d

dt

� t

0

f
�
τ ��

t 	 τ � β dτ 	 t 
 β f
�
0 � � � � (2.26)

In the case of marginal densities with a finite first moment of waiting times and a finite second
moment of log-returns, the limiting density u

�
x � t � is the solution of the standard diffusion equation

with α � 2 � β � 1, and thus the limiting process is a Wiener process.

3. Computational aspects

3.1 Program structure and non-uniform pseudorandom number generators

As explained in the previous section, an exact solution for the log-price density p
�
x � t � exists

only in the case of the NCPP, while series solutions with coefficients evaluated by numerical fast
Fourier transforms are in order otherwise. Here we pursue the alternative to simulate by Monte
Carlo the process given by Eqs. (2.1–2.2) and approximate p

�
x � T � with a histogram of the log-

prices x
�
T � at maturity T . While the mathematics seen so far is difficult, a Monte Carlo code

structure is straightforward: see Fig. 1.
Of course, the dust is hidden under the carpet of the random number generators random_t

and random_x. However, we will see that these functions are quite easy to code and can be used
as black boxes. As long as the random increments of each asset are independent of those of all
other assets, the two outer loops can be parallelised trivially over N � assets*runs processors:
it is a so-called “embarassingly parallel” problem as referred to in the Introduction.
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while (cin >> x_0 >> alpha >> beta >> gamma_x >> gamma_t) {

histogram.zero();

for (run = 0; i < runs; run++) {

t = 0, x = x_0;

while (t += gamma_t*random_t(beta) < t_max)

x += gamma_x*random_x(alpha);

histogram.add(x);

}

histogram.out();

}

Figure 1: Core of a C++ Monte Carlo program for the generation of continuous-time random walks.

Let u � �
0 � 1 � be a uniform pseudorandom variate; for its generation, we used the function

ran1 [9]. Non-uniform distributions can be generated by transformation from one u or two inde-
pendent u1 � u2: the exponential distribution taking τ � 	 γt logu [9], the normal distribution with
the modified Box-Muller method [9], the Mittag-Leffler distribution with the Kozubowski-Pakes
method [10, 11, 12, 13]

τ � 	 γt logu1

�
sin

�
πβ �

tan
�
πβu2 � 	 cos

�
πβ ��� 1

β
(3.1)

that is a generalisation of the transformation method for the exponential (it reduces to the latter for
β � 1), and the Lévy distribution with the Chambers-Mallows-Stuck method [14, 15, 16]

ξ � γx

�
wcosφ

cos
���

1 	 α � φ � � 1 
 1
α sin

�
αφ �

cosφ � φ � π
�

u1 	 1
2
� � w � 	 logu2 � (3.2)

that is a generalisation of the Box-Muller method (it reduces to the latter for α � 2).
Our aim is to simulate a whole financial market with several hundred traded assets for a dura-

tion T between one day and one month. We started our tests with one asset traded for T � 10000
seconds, i.e. about three hours, and a parameter γt � 10 seconds. This means that events happen
approximately every 10 seconds, i.e. there are about 1000 events (Figs. 2–4). A reasonably smooth
histogram requires about 100000 Monte Carlo runs (Fig. 2 right) and therefore 108 random waiting
times and 108 random jumps. The CPU time needed to generate 108 pseudorandom numbers on
different architectures for different distributions with a C++ program of ours is reported in Table 1.

There may be faster methods for the generation of non-uniform pseudorandom numbers like
the Ziggurat [17], but the setup of the latter for the Mittag-Leffler and Lévy distributions is difficult,
and the speed gain is modest compared to the loss when using e.g. simple rejection, especially if the
Mittag-Leffler density is computed by a series expansion according to its definition, Eq. (2.18), for
every point that is tested: up to 200 terms of the series are needed to achieve an acceptable accuracy
[18], and rejection done this way turns out more than 5000 times slower than the Kozubowski-Pakes
method! Simple rejection with a series evaluation of the Lévy density is “only” 400 times slower
than the Chambers-Mallows-Stuck method. The latter and its more recent and less well known
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Figure 2: Left: time series for α � 2 � β � 1 (red) and α � 1 � 90 � β � 0 � 97 (green). In both cases
γx � 0 � 0001 � γt � 10 � 0 � T � 10000. Right: histograms at T � 10000 and Gaussian fits.
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Figure 3: Waiting times for α � 2 � β � 1 (left) and α � 1 � 90 � β � 0 � 97 (right). Notice that the waiting
times of the CTRW (right) are longer and therefore fewer.

-0.0006

-0.0004

-0.0002

 0

 0.0002

 0.0004

 0.0006

 0  200  400  600  800  1000

ξ i

i

-0.0006

-0.0004

-0.0002

 0

 0.0002

 0.0004

 0.0006

 0  100  200  300  400  500  600  700  800

ξ i

i

Figure 4: Jumps for α � 2 � β � 1 (left) and α � 1 � 90 � β � 0 � 97 (right). Notice that the jumps of the CTRW
(right) are bigger (the vertical scale is truncated).
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companion by Kozubowski and Pakes deal with remarkable simplicity and smartness with the
awkward Lévy and Mittag-Leffler distributions, that do not have analytical expressions. We find
these methods most adequate for our purposes. At least they avoid blunders like simple rejection
connected with a series evaluation for every point. Even with an old Pentium IV processor, 100000
high-frequency simulations of a whole trading day with a demanding model like a CTRW can be
achieved in about 5 minutes, i.e. only 4 times more than with a standard NCPP.

Pentium IV Athlon 64 Opteron 270 IBM Power4+

Exponential 16 11 12 20
Gaussian 16 12 11 19
Mittag-Leffler 52 44 36 72
Lévy 73 66 52 95

Table 1: CPU time in seconds needed to generate 108 pseudorandom numbers on different architectures for
different probability distributions. The Pentium IV operates at 2.4 GHz, the Athlon 64 (an X2 Dual-Core)
at 2.2 GHz, the Opteron 270 at 2.0 GHz, and the Power4+ at 1.7 GHz. On the first three architectures we
used the Intel compiler with the -O3 optimisation option; on the IBM, we used the xlC compiler with the
-O5 option.

Though we have seen that a clever choice of the random number generators makes the model
treatable on a modest desktop computer, parallelisation can still be used to get results in a few
seconds rather than a few minutes: distributing the runs on N

�
runs processors yields an almost

linear speed-up, i.e. the wallclock time decreases by the same factor N. Parallelisation becomes
more interesting for a whole market with hundreds of assets. We have experimented parallelising
over both the number of runs and the number of assets, but eventually we concentrated on just the
latter approach, because it is simpler and it is acceptable for us to wait minutes for the results. This
might be different in a bank.

3.2 Virtual versus dedicated parallel computing

We consider two notable parallelisation paradigms. The first and most well-known for over a
decade consists in resorting to the Message Passing Interface (MPI) [19] on a cluster of Linux PCs
or Unix workstations or a dedicated parallel computer, e.g. our own Linux cluster with 85 dual core
dual Opteron 270 nodes or the IBM Regatta p690+ and BlueGene/L supercomputers installed at
Forschungszentrum Jülich in Germany [20]. Only C++ and Fortran 95 are supported on the latter
platforms.

A more recent alternative consists in using the Berkeley Open Infrastructure for Network
Computing (BOINC) [1] on heterogeneous hardware, most notably Windows PCs found in large
organisations like universities (computer rooms for students) and companies (trading floors), or
volunteered by peers over the Internet. The middleware runs like a screen saver. Our name
City@home was mutuated from the oldest and most well-known application, SETI@home (search
for extraterrestrial intelligence by radio evidence). Other BOINC applications are Folding@home
(investigation of protein folding), Predictor@home (study of protein-related diseases), cellcomput-
ing.org (biomedical research), worldcommunitygrid.org (advance knowledge of human diseases),
Rosetta@home (develop cures for human diseases), Einstein@home (search for gravitational sig-
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nals emitted by pulsars), LHC@home (improve the design of the CERN large hadron collider),
climateprediction.net (study of climate change), Quantum Monte Carlo at home, Grid.org, dis-
tributed.net, etc.

A comparison between dedicated and virtual high performance computers shows interesting
results. The IBM Regatta p690+ with its 32 � 41 = 1312 Power4+ processors running at 1.7 GHz
has 8.9 Teraflops peak performance, 5.6 Teraflops sustained performance, 56 Terabytes disk space,
and 1200 Terabytes tape archive; a few months after its installation in early 2004, it ranked 1st in
Europe and 21st in the world [21]. Its cost was 42 million

�
, plus 5 million

�
for the building.

Volunteer or peer-to-peer or public resource computing currently spreads half a dozen most popu-
lar applications over about 1 million hosts (0.1% of estimated existing PCs), providing a sustained
performance of 95.5 Teraflops (60 Teraflops for SETI@home alone) and 7740 Terabytes of stor-
age with an access rate of 5.27 Terabytes/second [22]. At zero cost, this surpasses even the new
BlueGene/L with 45 Teraflops peak power that has been recently installed in Jülich as the most
powerful supercomputer in the world for exclusively civil usage (it is the 6th on the absolute scale)
[21] and is dedicated only to a small number of selected scientific grand challenges.

In the initial stage of our project, our testbed is restricted to a small number of local computers,
and of course even in a later stage it will not be neither likely nor necessary to harness as much
volunteered computer power as SETI@home. However, we consider the BOINC approach inter-
esting per se. By the way, running on local trusted machines is more efficient by a factor 2 because
redundancy becomes superfluous: many applications use this stratagem to minimise the effect of
malfunctioning or malicious anonymous hosts. Each task is executed on two hosts belonging to
different volunteers; if the results agree within a tolerance, they are accepted, otherwise a third
instance is executed, and so on. If the fraction of inconsistent results is low, redundant computing
reduces effective computing power by a factor of only slightly more than 2.

4. BOINC components

The large-scale distributed nature of BOINC applications requires elaborate coordination of
the various system components. Since BOINC aims to be a generic framework for volunteer-based
compute projects, most of the architecture can be reused for a large range of applications. As
a consequence, a flexible, modular client-server architecture is provided into which the specific
application can be integrated. In this section, we give a short overview of the various BOINC
components on server as well as on client side (Fig. 4).

4.1 Server side

The most important component on the server side is the project back end. The back end is the
central unit in charge of coordinating a BOINC project. It provides applications and work units
to systems participating in a specific project. Furthermore, it handles all communication with the
clients, i.e. it receives, checks and manages the results generated by all client systems.

As a separate component, mostly to reduce network load on the project back end side, data
servers manage the distribution of work packages. The data servers must not be part of the project
infrastructure itself, and can also be operated at different locations to avoid data throughput bottle-
necks.
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Figure 5: Structure of City@home distributed using BOINC.

The BOINC server complex consists of four components: the web interfaces, utility programs,
scheduling servers, and the BOINC database. The web interfaces are the primary user interfaces
for BOINC applications. They are usable from any web browser and are separated for project
developers and participants. While participants can obtain information about a specific project’s
aim, software releases and current statistics, administrators are provided with progress reports and
are enabled to take actions. The utility programs act as interface between the server complex
and the project back end. One or more scheduling servers communicate with the clients. They
are responsible for coordinating the work that is ready to issue so as to make the best use of the
computers available. Finally, the BOINC database stores information about work packages, results
and projects participants in a relational MySQL database.

4.2 Client side

On the client side of the BOINC infrastructure, a modular framework is provided that permits
application developers to concentrate on their specific application by providing and encapsulat-
ing all communication requirements in client software components common to all BOINC-based
projects.

The base client is the elementary BOINC component on the computer of each project par-
ticipant. It communicates with the scheduling server, fetches new work units, delivers the results
back and buffers a certain amount of work packages and results in a local cache. Depending on the
number of processors available — that differ over time — the work units are kept comparatively
small. In our case, with typical values for assets of a few 100 and for runs of about 100000,
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a workload unit consists of 1 	 10 � 100000 runs of the inner while-loop, i.e. of the complex part
of the calculation that calls the random_t and random_x functions. Each client computer is
assigned a unique ID when logging in to a BOINC server for the first time. All further connec-
tions to the server are enumerated using this ID and stored on client and server side. The base
client also acquires and manages information on the local system like number and type of CPUs,
available disk space, amount of main memory etc. This data is stored in the BOINC database and
form the basis for deciding if a particular client will be handed a certain task or not. The statistical
evaluations of Ref. [22] used this data.

One base client is able to support and manage several scientific applications at the same time,
so no installation overhead is generated for a potential BOINC user who wishes to provide com-
puting power to several projects simultaneously.

On the client side, there are several APIs available. The base client provided by the BOINC
infrastructure and the scientific BOINC application communicate using the BOINC API as well
as a Graphics API. The base client generates a graphical progress indicator for each project. In
addition, the project application can deliver more complex graphical output and even complete
screen savers. Often, OpenGL is used for graphics output; the base client and the applications
communicate via a BOINC-specific XML-based protocol.

Finally, the scientific application is the specialised distributed computational problem to be
solved. It consists of a program (typically compiled for several client platforms like Windows,
MacOS X and Linux/x86), work units and results. A project may consist of several separate appli-
cations that take care of the scientific calculations.

Scientific applications must not necessarily be developed as open source components, even
though BOINC itself is an open source project. This provides developers of large-scale distributed
applications with the advantage of being able to keep algorithms and data relatively secure, though
no real security mechanisms against reverse-engineering the client-side application are provided by
BOINC. An approach to categorise the possible threats for applications in a large-scale distributed
computing environment can be found in [23]. Many of the threat models discussed in this paper are
also relevant for BOINC-based applications; however, in our current intranet-based deployment of
City@home, security considerations are not an issue.

5. Conclusions

BOINC provides a flexible, no-cost framework for developing distributed computing applica-
tions. Due to its support of C/C++ and Fortran code as applications, existing code may be leveraged
and reused. BOINC is mostly suited for applications involving easily parallelisable parts. For these
kind of applications, thanks to the power of idle PCs either in one’s own organisation or volunteered
over the internet, BOINC-based calculations experience a significant speedup.

Even with such a computationally expensive model like a Monte Carlo CTRW, large portfolios
can be simulated in a few minutes within intra-day scenarios of synthetic high-frequency time
series, depending on how many processors are available.
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