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1. Introduction

The general topic of statistical analysis of CMB data is a very wide area. Rather than present
a very broad overview, we instead concentrate on a single unifying topic, namely the use of the
evidence in Bayesian inference. Bayesian methods for parameter estimation are now very widely
accepted within the CMB community, but the use of the evidence to select between different mod-
els for the data is a relatively recent development. We beginby introducing the concept of the
evidence, then explain how it can be computed and conclude byillustrating its use in a number of
cosmological examples.

2. Model selection and Bayesian evidence

Let us begin by defining the evidence in completely general terms. Suppose we collect a set
of N data pointsDi (i = 1,2, . . . ,N), which we denote collectively as the data vectorD . Suppose
further that we propose some model (or hypothesis)H for the data that depends on a set ofM
parametersθ j ( j = 1, . . . ,M), that we denote by the parameter vectorθ .

Bayes’ theorem states that

Pr(θ |D ,H) =
Pr(D |θ ,H)Pr(θ |H)

Pr(D |H)
, (2.1)

where the meaning of each term is as follows. The prior Pr(θ |H) represents our state of knowledge
(or prejudices) about the parameter values before analysing the data. This is modulated by the
likelihood, Pr(D |θ ,H), of the data given a particular set of parameter values. Thisproduct gives
(to within a constant factor) the posterior Pr(θ |D ,H), which encodes all the inferences regarding
the parametersθ . The normalisation of the posterior is given by the evidencePr(D |H), and it is
this quantity that may be used to decide which of a set of alternative models best describes the data.

Suppose, for example, that we have two alternative modelsH0 andH1 for describing a data-
setD , whereH0 depends on the parameter setθ0, andH1 on the setθ1. For Hi (i = 0,1), the
probability density associated with the observed dataD is

Pr(D |Hi) =

∫
Pr(D |θi,Hi)Pr(θi|Hi)dθi. (2.2)

In either caseH0 or H1, the evidence is the average of the likelihood with respect to the prior.
Thus a model has a large evidence if more of its allowed parameter space is likely, given the data.
Conversely, a model has a small evidence if there are large areas of its allowed parameter space
with low likelihood values. Hence evidence naturally incorporates Occam’s razor: a simpler theory
is preferred to a more complicated one, unless the latter is significantly better at describing the data.
In performing model selection, one then merely needs to consider the ratio

Pr(H1|D)

Pr(H0|D)
=

Pr(D |H1)

Pr(D |H0)

Pr(H1)

Pr(H0)
, (2.3)

in which the prior probabilities of the hypotheses also appear. It is often true that Pr(H0) = Pr(H1),
in which case the preferred model is simply that with the largest evidence. In some cases, however,
the priors are not equal and the proper form (2.3) should be used.
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Figure 1: A coin tossing experiment.

2.1 A simple example

A real case (reported in the newspapers) in which Bayesian model selection has been applied
concerned a Belgian one Euro coin (see [16]). In a coin tossing experiment the coin came down
heads 140 times, and tails 110. What is the evidence ratio forH1 ‘it is biased’ versusH0 ‘it is fair’?

Clearly one can only answer this with a definite form forH1, so let us assumeH1 corresponds
to a uniform prior over[0,1] for the probabilityp of heads: so Pr(p|H1) = 1. Then,

Pr(D|H1) =

∫
Pr(D|p,H1)Pr(p|H1)d p =

∫ 1

0
pnH (1− p)nT d p =

nH !nT !
(nH + nT +1)!

Meanwhile, if the coin is fair then Pr(D|H0) = (1/2)nH +nT . Thus, for the numbers given, the ratio
of evidences is

Pr(D|H1)

Pr(D|H0)
=

2250140!110!
251!

= 0.48.

If the two hypothesis are equally likely a priori, so that Pr(H0) = Pr(H1), then (2.3) shows the
hypothesisH0 that the coin is fair is favoured by 2 to 1 relative to our alternative hypothesisH1. As
discussed in [16], by different choice of priors onp, tailored to be more favourable to the outcome
actually observed, it is possible to reverse the sense of this comparison. However, even the most
extreme choice of prior is unable to match the type of ‘probablity’ in favour of H1 that standard
frequentist significance methods yield.

2.2 Another simple example (more relevant to astronomy)

Suppose we have data at known sample points and want to know ifthere is a ‘trend’ present
(see Fig. 2). Thus, the two alternative models for the data are: H1: yi = a0 + a1xi + εi andH0:
yi = a0 + εi, whereε is a noise vector belonging toN(0,σ2) (say). To perform a model selection,
we need to specify priors ona0 anda1. If we let these be uniform (and uncorrelated) over(−∞,∞)

then we can perform the integrals analytically (the actual form of priors is not too important if data
is definitive). In this case, one finds that

Pr(D|H1)

Pr(D|H0)
=

√
2πσ2

∑(xi − x̄)2 exp

{
[∑(xi − x̄)(yi − ȳ)]2

2σ2 ∑(xi − x̄)2

}
, (2.4)
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Figure 2: Linear regression.

which depends on the (positive) exponential of the correlation coefficient squared. Note that one
aspect we have glossed over here is that the use of an infinite range has led to improper priors ona0

anda1, and there has been no attempt in (2.4) to deal with the infinite normalisation factors which
arise from these. Despite this, the emergence in this approach of the correlation coefficient as the
important statistic, is clearly satisfying.

3. Evaluation of the evidence

In general, evaluation of the evidence integral (2.2) has tobe performed numerically, and is
computationally challenging. For ease of notation, let us first rewrite Bayes’ theorem (2.1) as

Pr(θ |d ,Hi) =
Pr(d |θ ,Hi)Pr(θ |Hi)

Pr(d |Hi)
→ Pi(θ ) =

Li(θ )πi(θ )

Ei
,

so that the evidence integral becomes

Ei =
∫

Li(θ )πi(θ )dθ .

If the dimensionM of the parameter space is small (M <
∼ few), one may calculate the unnor-

malised posterior̄P(θ ) = L(θ )π(θ ) over a grid in parameter space and perform simple quadrature
to obtain the evidence trivially. For higher-dimensional problems, this approach rapidly becomes
impossible and one needs to find alternative methods.

3.1 Gaussian approximation to the posterior

The simplest approach is to use a multivariate Gaussian approximation to the ‘unnormalised’
posterior about its peak (see e.g. [7])

Pi(θ ) ≈ Pi(θ̂ )exp
[
−1

2(θ − θ̂)t
V

−1(θ − θ̂)
]
,

whereV −1 = −H = − ∇∇ lnPi(θ )
∣∣
θ=θ̂ is the inverse covariance matrix. In this approximation,

the evidence integral is analytic and given byEi ≈ (2π)Mi/2|Vi|
1/2Li(θ̂ )πi(θ̂ ). Hence the log evi-

dence ratio is

ln

(
E0

E1

)
= ln

(
L̂0

L̂1

)
+ 1

2

[
(M0−M1) ln(2π)+ ln

(
|V0|

|V1|

)]
+ ln

(
π̂0

π̂1

)
,
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Figure 3: Gaussian approximation to the posterior for the standardΛCDM model with parameters
(ωb,ωc,θ ,τ, lnA,ns), whereθ is the ratio of the angular diameter distance to the sound horizon at decou-
pling; the data sets used are WMAP1, ACBAR, CBI, VSA, SDSS andHST. The black contours are derived
from 104 MCMC samples and the red contours are the Gaussian approximation (from [27]).

where the hats on variables denote their values at the peak ofthe posterior. In particular, we note
that ln(L̂0/L̂1) =−1

2∆χ̂2 if the likelihoods are Gaussian, and ln(π̂0/π̂1) = ln(∆θ1/∆θ 0) if the priors
are uniform with widths∆θi.

In using this approach, it can be useful to choose ‘normal’ parameters to improve the accuracy
of the approximation. In cosmological parameter estimation in particular, the Gaussian approxi-
mation can be made very accurate by using the ‘physical’ variables proposed by [13] (see Fig. 3).

3.2 Savage–Dickey density ratio

The Gaussian approximation is poor for complicated or multimodal posteriors, especially in
the wings of the distribution and at any abrupt cut-offs resulting from priors. One can, however,
calculate an exact evidence for an arbitrary posterior using the Savage–Dickey density ratio [6],
provided: (i) H0 and H1 are nested hypothesis, which impliesL0(θ ) = L1(θ ,ψ = ψ0); and (ii)
the prior on the parameters is separable, which implesπ1(θ ,ψ) = π0(θ )π1(ψ). In this case, the
evidence ratio becomes

E0

E1
=

P1(ψ0)

π1(ψ0)
,

whereP1(ψ0) =
∫

P1(θ ,ψ0)dθ is the properly normalised marginalised posterior for the modelH1,
evaluated atψ = ψ0. The main problem with this method, however, is that the estimation of the
marginalised posterior needs MCMC sampling, often requiring some annealing to probe the wings
of the distribution. Hence the resulting evidence value is stochastic and is often just as diffcult to
evaluate in practice as the more general methods we discuss below.
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3.3 MCMC sampling and thermodynamic integration

Calculating the evidence using MCMC sampling (with annealing) from the full posterior re-
quires no assumptions regarding hypotheses or priors. The basic method is thermodynamic inte-
gration (see e.g. [9]). One begins by defining

E(λ ) =

∫
Lλ (θ )π(θ )dθ , (3.1)

so the required evidence value isE(1). One then performs MCMC sampling fromLλ (θ )π(θ ),
starting withλ = 0 and slowly raising its value according to some annealing schedule untilλ = 1.
The Ns samples corresponding to any particular value ofλ may be used to obtain an estimate of
the quantity

〈lnL〉λ ≡

∫
(lnL)Lλ π dθ∫

Lλ π dθ
≈

1
Ns

Ns

∑
i=1

lnL(θ i),

From (3.1), this quantity can also be written as

〈lnL〉λ =
1
E

dE
dλ

=
d lnE

dλ
,

and so the (log of) the evidence is given by

lnE(1) = lnE(0)+
∫ 1

0
〈lnL〉λ dλ ≈

Nλ

∑
j=1

〈lnL〉λ j
∆λ j,

where we use the fact thatE(0) = 1, and whereNλ and∆λ j are the number ofλ values and the
corresponding stepsizes in the annealing schedule.

Although entirely general in its applicability, thermodynamic integration clearly produces ev-
idence values that are stochastic. The major problem, however, is that accurate evidence values
require slow annealing. Moreover, common schedules, such as linear or geometric ones, can get
stuck in local maxima. Nonetheless, [21] proposes a ‘selective annealing’ method in which ‘bad’
regions die without tunneling and no ‘good’ sample is ever destroyed. This method is not so
troubled by the existence of local optima, but the annealingstill slows at phase transitions of the
system. It is also worth noting that, independent of its use in thermodynamic integration, annealing
can greatly improve MCMC chain mobility during burn-in by applying the likelihood gradually.

3.4 Nested sampling

A new technique for efficient evidence evaluation (and the production of posterior samples)
has recently been proposed by [22]. In this approach, one begins by defining the quantity

X(λ ) =

∫

L(θ )>λ
π(θ )dθ ,

which is simply the prior mass contained within the region ofparameter space over which the
value of the likelihood exceedsλ . It is useful also to define the inverse functionL(X), such that
L(X(λ )) = λ . One may now make a change of variable that converts the multi-dimensional evi-
dence integral (2.2) into the one-dimensional integral (see Fig. 4).

E =
∫

L(θ )π(θ )dθ =
∫ 1

0
L(X)dX .

6
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Figure 4: Geometrical interpretation of the variables in nested sampling.

1. Set j = 0; initially X0 = 1, E = 0

2. Sample N points {θ i} randomly from π(θ)

and calculate their likelihoods

3. Set j → j +1

4. Find point with lowest likelihood

value (L j)

5. Remaining prior volume X j = t jX j−1 where

Pr(t j|N) = NtN−1
j ;

or just use 〈t j〉 = N/(N +1)

6. Increment evidence E → E + L jw j

7. Remove lowest likelihood point from

active set

8. Replace with new point sampled from

π(θ ) within hard-edged region L(θ ) > L j

9. If LmaxX j < αE (where α = some tolerance)

⇒ E → E + X j ∑N
i=1 L(θ i)/N; stop

else goto 3

Figure 5: The nested sampling algorithm and its pictoral representation (the latter from [16]).

Let us now suppose one can evaluateL j = L(X j) where 0< Xm < · · · < X2 < X1 < 1. In this case,
one can therefore estimateE by any numerical method:

E =
m

∑
j=1

L jw j, (3.2)

wherew j are an appropriate set of weights; for a simple trapezium rule w j = 1
2(X j−1−X j+1).

In nested sampling the summation (3.2) is performed as illustrated in Fig. 5. The key ad-
vantages are that: (i) in cosmological applications nestedsampling typically requires∼ 100 times

7



P
o
S
(
C
M
B
2
0
0
6
)
0
1
4

Methods and tools for statistical analyses of CMB data Anthony Lasenby and Michael Hobson

Figure 6: Practical nested sampling: single ellipsoidal method (left) and clustered ellipsoids method (right).

fewer samples than thermodynamic integration to calculateevidence to same accuracy; (ii) nested
sampling does not get stuck at phase changes, unlike thermodynamic integration. In addition to
efficient evaluation of the evidence, posterior samples areeasily obtained as a by-product. One
simply takes the full sequence of sampled pointsθ i and weights theith sample bypi = Liwi/E.
For example, if one were interested in deriving constraintson some quantityQ, then its mean and
standard deviation are given by

µQ = ∑
i

piQ(θ i), σ2
Q = ∑

i
(piQ(θ i)−µQ)2.

The main problem to address in the nested sampling algorithmis how to sample efficiently
from the prior (which is often uniform) within some complicated, hard-edged likelihood constraint.
This is not well-suited to standard MCMC techniques. The best published technique thus far [19]
involves fitting an ellipse to the active points and selecting within it, but this is still problematic in
a number of ways, particularly for multimodal posteriors. This difficulty is illustrated in Fig. 6 (left
panel), from which it is clear that sampling from the single ellipse will have a very low acceptance
rate. Moreover, this problem becomes rapidly worse as the number of dimensions increases.

In such a situation, one would instead wish to sample from thetwo separate ellipses illustrated
in Fig. 6 (right panel), in which case the acceptance rate would remain very high. [20] propose
a clustered nested sampling algorithm that can accommodatemultimodal posteriors. In this ap-
proach k-means clustering (see [16]) is used to find exactly two clusters at each stage of the nest.
The volumes of the enclosing ellipsoid(s) in the clustered and unclustered cases are calculated and
the clusters accepted if the total enclosing volume is reduced by a specified fraction and the clus-
tered ellipsoids do not overlap. The process is then repeated hierarchically. The advantage of this
approach is that one need not know the number of clusters in advance and it provides an elegant
method for parallelising the process. Nonetheless, the method would still be inefficient for elon-
gated ‘banana-shaped’ degeneracies. Fig. 7 shows the samples obtained in applying the algorithm
to a simple toy posterior consisting of three Gaussian peaks. The estimated log-evidence value is
lnEest= −5.16±0.09 as compared with the true value lnEtrue = −5.22.

4. Cosmological applications of Bayesian model selection

Although the use of the evidence to perform Bayesian model selection is relatively new in

8
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Figure 7: Illustration of cluster nested sampling applied to a posterior consisting of three Gaussians.

cosmology, there already exist a number of areas in which it has been applied. In this final section,
we give a brief outline of some of these investigations, withthe aim of illustrating the wide range
of applications for the evidence.

4.1 Extending the cosmological parameter set

The most obvious use for the evidence in a cosmological context is in deciding whether the
existing cosmological data imply the need for more free parameters than in the standardΛCDM
model. In this application, the hypotheses (models) are clearly nested. Care must be taken, how-
ever, since evidence values clearly depend on the choice of parameterisation and the associated
priors. It must also be remembered that evidences for different models can only be compared when
considering the same (combined) dataset.

Several investigations have been performed using different evidence evaluation methods. The
earliest use of evidence in this context was by [10] in relation to fixing or varying the Hubble
parameter. In terms of full, multi-parameter cosmologicalmodel fitting to combined datasets,
however, [23] presented the first account, in which thermodynanic integration was used to eval-
uate evidences for a set of models of increasing complexity,namelyΛCDM + Ωk + fν + (R,nt).
Subsequently, [1] used the Gaussian approximation and thermodynamic integration to investigate
the model setΛCDM + 3 isocurvature mode models; [27] used the Gaussian approximation and
the Savage–Dickey density ratio to evaluate evidences for the model setsΛCDM-HZ + ns + Ωk

andΛCDM + simple isocurvature mode; and [19] used nested sampling to select from the model
setΛCDM-HZ + ns + w. All find the maximum evidence for the standardΛCDM model with a
variable power-law indexns.

4.2 The form of the primordial power spectrum

More extensive investigations into the preferred model forthe primordial power spectrum have
been performed by [2] using Bayesian evidence. Fig. 8 shows the models of the primordial power
spectrum considered. In particular, the ‘Lasenby & Doran’ spectrum results from a cosmological
model with a novel boundary condition that restricts the total conformal time available to the uni-
verse [15]. Also investigated was a ‘broken spectrum’ modelthat consisted of two scale-invariant
sections joined by a sloping line segment. Some example evidence results are given in Table 1,
from which we see that the Harrison-Zel’dovich (ns = 1) model is strongly disfavoured relative to

9
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Figure 8: Models of the primordial power spectrum: parameterised models (left) and free-form fit in bins
(right).

Model lnEi − lnE0

Constantn 0.0± 0.5
H-Z -4.4± 0.5

Running -0.8± 0.6
Cutoff 0.4± 0.5
Broken -2.7± 0.6
Binned -6.1± 0.6

Lasenby & Doran 4.1± 0.5

Table 1: Differences of log evidences (for primordial parameters) for all models with respect to single index
model within a current (near) concordance cosmology:Ω0 = 1.024,Ωbh2 = 0.0229,h = 0.61,Ωcdmh2 =

0.118, as compared to the Lasenby & Doran model (treated as a template).

a power law with variablens. The binned model is also disfavoured indicating it is unnecessaily
complicated to explain the data. Interestingly, the Lasenby & Doran model is clearly the most
favoured.

4.3 A rotating universe and Bianchi models

Several authors have commented on a significant North/Southasymmetry in the WMAP data,
plus strange alignments between low multipoles. [11] fitteda Bianchi VIIh template to the WMAP
sky and found a best fit withΩ0 = 0.5. The coldest part of the template corresponds with a non-
Gaussian spot found in [28] and investigated further in [4].However,Ω0 = 0.5 is in conflict with
most other astrophysical indicators. Can one achieve the same in models includingΛ? This has
recently been investigated by [12] and a full Bayesian exploration of the parameter space of this
model has been performed by [3].

Generally, a non-zeroΛ has the effect of the shortening conformal time available, and so one
needs very smallh values in order to get similar smaller scale effects. One discovers it is impossible
to find a good model in which the Bianchi template cosmology values match those of a background
cosmology that fits existing data (e.g. the acoustic peaks).Nevertheless, it is still interesting to

10
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Figure 9: Simulated skies containing standard CMB anisotropies (topleft) superposed on a Bianchi template
(top left) with different amplitudes (bottom 8 panels). TheBianchi amplitude parameterω , which measures
the vorticity, and the log-evidence difference obtained are shown in each case.

evaluate the evidence for the Bianchi VIIh model, treating it merely as a template. How much do
we really need it in our data?

As an illustration, we can simulate maps containing Bianchitemplates with different vorticities
and see how well the evidence value can discriminate betweenmodels with and without a Bianchi
component. From Fig. 9, we find that we start to be able to discriminate, at about the level of
the original Bianchi template. Indeed, considering this for the real data (noΛ now), then in [3]
evidence is found in favour of the introduction of a Bianchi template. Since the original version of
this paper, however, new calculations have shown that the evidence difference is only weak (less
then 1 unit in lnE for both the WMAP1 and WMAP3 data sets), so the jury is still out on whether
the introduction of a template of this kind is really needed.

4.4 Combining cosmological datasets

One often estimates cosmological parameters by a joint analysis of a number of datasets. The
standard technique for independent datasets is simply to multiply likelihoods. Freedom exists,
however, in the relative ‘weight’ given to each dataset; this weighting is usually ad-hoc – datasets
are excluded (weight zero), or included (weight unity). Instead one can include weights as hy-

11
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Figure 10: Left: posterior ellipses for joint data sets with differinggeometric degeneracies with a centre
separation of 7 units. Right: the corresponding ratioR for each case (and the case where the axis orientation
θ = π/6) as a function of the separate of the centres of the distributions (from [18]).

Basic parameter Prior

ωb (0.005,0.05)
ωdm (0.01,0.4)

Ωk (−0.3,0.3)

h (0.4,0.9)

ns (0.8,1.2)

τ (0.01,0.7)

log1010As (1,5)

Table 2: Prior ranges assumed in the test for mutual consistency of different cosmological datasets.

perparameters, then marginalise them out [14]. One can use the evidence to select between the
modelsH0 = ‘all weights unity’ andH1 = ‘each dataset has free weight(≥ 0)’ to determine if the
data support introduction of hyperparameters [7].

Another approach to testing the mutual consistency of different datasets [18] is to use the
evidence to select between modelsH0 = ‘all datasets generated by same cosmological parameters’
andH1 = ‘each dataset generated from different set of cosmologicalparameters’, then calculate
the ratio

R =
E(D |H0)

E(D |H1)

Pr(H0)

Pr(H1)
=

E(D |H0)

∏k E(Dk|H1)

Pr(H0)

Pr(H1)
.

A toy example is illustrated in Fig. 10. The method has been applied to real data (also by [18]),
for the joint datasets CMB (WMAP1+VSA+CBI+ACBAR) + SDSS + SN1A, in the context of
a ΛCDM model, using the priors listed in Table 2. For different dataset combinations one finds:
lnR = 0.23 for CMB + SDSS; lnR = 1.5 for SDSS + SN1A; lnR = 1.6 for SN1A + CMB; and
lnR = 4.5 for CMB + SDSS + SN1A. Thus, in general, the null hypothesisH0 is favoured.

4.5 Component separation

Observations of the CMB are contaminated by foregrounds, but multifrequency observations

12



P
o
S
(
C
M
B
2
0
0
6
)
0
1
4

Methods and tools for statistical analyses of CMB data Anthony Lasenby and Michael Hobson

allow a component separation to be performed. Several blindand non-blind methods have been
proposed, but the current approach for Planck is to use spectral matching independent component
analysis (SMICA) [5] to determine the component power spectra and mixing matrix, followed by
the maximum-entropy method (MEM) or Wiener filter ([8],[24]) to obtain the component maps
and refined power spectra. The evidence can be used to good effect in both stages.

In the SMICA algorithm the evidence provides a means of determining the number of compo-
nents present in the data. The SMICA approach models then f frequency observations as a noisy
mixture of nc Gaussian random fields. The analysis is performed in harmonic space, using the
modeldℓm = BℓAsℓm +nℓm, whereBℓ andA denote the beam and mixing matrices respectively.
Thus the model data covariance matrices readDℓ = BℓASℓA

tB t
ℓ +Nℓ, with Sℓ andNℓ (block)

diagonal. We may construct the corresponding data covariancesD̃ℓ and form the log-likelihood

lnL = −1
2 ∑

ℓ

[
Tr(D̃ℓD

−1
ℓ )+ ln |Dℓ|

]
.

One maximises lnL using a combination of expectation maximisation and conjugate gradient al-
gorithms to obtain estimateŝSℓ andÂ. Calculating the Hessian matrix at the peak allows one to
calculate the Gaussian approximation to the evidence. One may then plot the evidence versusnc to
estimate the number of components [26].

In the MEM/Wiener filter algorithm the evidence can be used todetermine the appropriate
level of regularisation in performing the reconstruction.All regularised harmonic-space methods
involve minimising some function of the form.

F(sℓm) = χ2(sℓm)−αℓS(sℓm).

At eachℓ one can determineαℓ by maximising the evidence (using a Gaussian approximation).
This enables automatic, optimal, scale-dependent regularisation and stable iterative updating of
power spectra. One can also use the HessianHℓm = ∇∇F(sℓm) at the peak to estimate the co-
variance matrix of the reconstruction errors. The general method is easily extended to accommo-
date anisotropic noise, cut-sky data and (weakly) spatially-varying spectral parameters [25]. The
method has recently been applied to the Planck Working Group2 component separation challenge
with promising results (see Fig. 11); more sophisticated rounds are to come.

4.6 Object detection

An important issue in the analysis of CMB data is the detection and characterisation of discrete
objects, such as SZ clusters and point sources. A number of Bayesian approaches to discrete object
detection have been proposed by [9] and shown to outperform standard linear filtering techniques
(see also [17]).

One approach is to detect objects simultaneously. One assumes an unknown numberN of
objects in the model of the data:D = n + ∑N

k=1s(ak), whereak are the parameters characterising
thekth object. Assuming the background emission and noise to be Gaussian, the likelihood function
is simply

L(D |θ ) =
exp

{
−1

2[D−s(θ )]tN −1[D−s(θ )]
}

(2π)Npix/2|N |1/2
,
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Figure 11: Application of MEM component separation to the WG2 challenge, consisting of 9 Planck chan-
nels, all with 10 arcmin beams and containing CMB, dust, free-free and synchrotron emission. Top row:
CMB map input (left), output (middle), residuals (right). Bottom left: CMB power spectrum input (green),
output (black) and errors bars (red). Bottom right: CMB power spectrum residuals for various methods.

whereθ = (a1,a2, . . . ,aN ,N) is the total parameter vector. One can set priors onθ -spaceπ(θ ) =

π(a1) · · ·π(aN) andN, e.g. Pr(N) = µNe−µ/N!. One then explores the posterior distribution using
MCMC sampling to obtain optimal values of parameters, and associated errors, in a single step.
The number of objects present is determined by maximising evidence with respect toN. A toy
example is shown in Fig. 12. The main problem with this approach is that it is computationally
very demanding, taking nearly 1 hour on a 1 GHz intel processor to obtain the results shown.

An alternative approach is to detect objects iteratively orsequentially. At each iteration or
pixel, the model contains only a single object. One then maximises the posterior in the object
parametersa using some optimiser or MCMC sampling. For each ‘identified’object, one then
selects between the modelsH0 = ‘there is no object centred in this pixel’ andH1 = ‘there is an
object centred in this pixel’. This is performed by calculating the ratio

R =
E(D |H1)

E(D |H0)

Pr(H1)

Pr(H0)
=

E(D |H1)

E(D |H0)

〈Nobj〉

Npix
,

and one only accept objects withR above some threshold (usually zero). The iterative/sequential
approach is very fast, detecting many 100s of objects in justless than a minute.

5. Conclusions

The Bayesian framework provides a unified approach to data analysis, providing two levels of
inference: parameter estimation and confidence limits by maximising or exploring the posterior;
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Figure 12: Simultaneous Bayesian object detection: true map (top left); data map (top right); evidence
versusN (bottom left); posterior samples forN = 7 model.

and model selection by integrating the posterior to obtain the evidence. There exist several methods
for evaluating the evidence: Gaussian approximation and the Savage–Dickey density ratio (which
are approximate or restricted in their applicability); andthermodynamic integration and nested
sampling (which are generally applicable).

Model selection using the evidence has many (cosmological)applications, including: the
inclusion of additional free cosmological parameters; theform of primordial power spectrum;
Bianchi models and other exotic models; combining cosmological data-sets and consistency checks;
number of components and regularisation in component separation; and object detection. Further
(cosmological) applications remain – you might like to try it for yourself!
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