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The emission of 1.809 MeV gamma-ray from the first excited state of 26Mg followed by beta-

decay of26Al in its ground state (denoted as26Alg.s.) has been identified by gamma-ray telescopes

such the Compton Gamma-Ray Observatory (CGRO) [1]. To resolve controversy over the pos-

sible sources of the observational 1.809 MeV gamma-rays, one needs accurate knowledge of the

production rate of26Al. The 25Al(p,γ)26Si reaction which is the competition reaction for produc-

tion of 26Alg.s. is one of the important subjects to be investigated. In this work, the astrophysically

important26Si states above the proton threshold were studied via the28Si(4He,6He)26Si reaction.

We have preformed an angular distribution measurement using the high resolution QDD spectro-

graph (PA) at Center for Nuclear Study (CNS), University of Tokyo. The experimental results

and data analysis will be presented.
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1. Introduction

26Al is the first cosmic radioactivity ever detected through its characteristic 1.809 MeVγ-ray
line. Since theβ -decay life time of26Al (t1/2 = 7.17× 105 yr) is much shorter than the time scale
of galactic chemical evolution (≈ 1010 year), the observation of large amounts (∼ 3 M⊙) 1.809
MeV γ-ray in the Galaxy [2] is strong evidence that the process of nucleosynthesis is currently
active. One possible source for the production of26Alg.s. is nova explosion [3]. Under the explosive
hydrogen burning conditions in nova site, the production proceeds via the reaction sequence

25Al(β+ν)25Mg(p,γ)26Alg.s.(β+ν)26Mg∗(γ)26Mgg.s.

However, if the proton capture rate on25Al is faster thanβ -decay rate of25Al, above reaction
sequence is bypassed by

25Al(p,γ)26Si(β+ν)26Alm(β+ν)26Mgg.s.

reaction sequence. With shell model calculations and mirror nucleus consideration using past data,
Illiadis et al. [4] suggested that the25Al(p,γ)26Si reaction should be dominated by the 3+ unnatural
parity state (Ex=5970(100) keV) under explosive hydrogen burning process in nova. Recent studies
of 28Si(p,t)26Si [5], 24Mg(3He,nγ)26Si [6], and29Si(3He,6He)26Si [7] reduced the uncertainties in
the26Si levels above the proton threshold and identified new states as candidates for the unnatural
parity states. Also precise mass measurement of26Si via 28Si(p,t)26Si reaction has been performed
[8]. However, for such candidates, they could not make any spin assignment directly using the an-
gular distribution measurement. In present work, we decided to study the astrophysically important
resonant states in26Si via the28Si(4He,6He)26Si reaction which could excite unnatural parity state
directly, in contrast with the (p,t) reaction that cannot excite unnatural parity state.

2. Experimental procedure

The28Si(4He,6He)26Si reaction was studied using the high resolution QDD(quadrupole-dipole-
dipole)-type magnetic spectrograph (PA) at Center for Nuclear Study (CNS), University of Tokyo.
Recently PA has been connected to RIKEN accelerator facility which consists of Ring Cyclotron
(RRC) and Linear Accelerator (RILAC). The intrinsic momentum resolution of PA is given by
∆p/p ∼ 0.01%. However, in the test experiment after installation,the momentum resolution was
measured to be 0.1% in FWHM (Full Width at Half Maximum). In order to derive the best con-
dition of a magnetic spectrograph, first of all, the beam condition of accelerator and spectrograph
at the target position should be matched. The dispersion matching method [9] has been used to
realize this. To find the optimized beam transport parameters for dispersion matching, we simu-
lated the beam transportation with the TRANSPORT code[10].We tested the dispersion matching
beam transportation with12C(4He,4He)12C reaction at 10 degrees of PA angle. As a result, for
elastic scattered alphas, we achieved∆p/p∼ 0.017% which is enough to study28Si(4He,6He)26Si
reaction.

A beam of4He at 120 MeV was extracted from RIKEN linear accelerator (RILAC) + RIKEN
ring cyclotron (RRC). Beam intensity was typically 70 enA atthe target position. A self-supporting
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Figure 1: Two-dimensional spectra of∆E-E, measured at 8◦. ∆E and E represent the first energy loss gas
counter and thick scintillator, respectively. The contourlevels are in logarithmic steps. As shown,6He could
be clearly discriminated from other particles.

natural silicon target (thickness∼ 1 mg/cm2) was used to populate states in26Si. To avoid the
contamination from elastically scattered4He which could be the main source of contamination
due to its large cross section, the magnetic parameters of the PA were set to bend the elastically
scattered4He beam off from the effective region of the focal plane detection system. Consequently
the spectra were free from the contamination of elasticallyand inelastically scattered4He.

The focal plane detection system consisted of a hybrid gas counter and plastic scintillators.
Four proportional gas counters, which were two position counters (X1 and X2) and two energy
loss counters (∆E1 and∆E2) were installed in the hybrid drift chamber. We determinethe excita-
tion energies of the levels in26Si from the position information on the focal plane. The position
corresponds to the linear momenta of incident particles. The position counters give precise position
information by charge division method. The relation between the position and charges from the
both ends of counters is expressed as follows:

x = α ×
Xhigh

Xlow +Xhigh + β . (2.1)

where,x stands for the position.Xhigh(low) represents for output signals from the high (low) momen-
tum side of the position counter.α andβ are constants. The plastic scintillators consisted of thin
(0.5 mm) and thick (10 mm) scintillators as∆E and E detectors, respectively.

For the particle identification, we used six∆E-E information :∆E1-E,∆E2-E,∆E-E, (L1+H1,
sum of lower and higher momentum side signals for X1)-E, and (L2+H2)-E. Also we used time-
of-flight (TOF) information with RF signal from acceleratorand vertical position information. The
vertical position information on the focal plane could be deduced by the time difference between
the fast energy signal from thick plastic scintillator (E) and the slow energy loss signal from gas
counters (∆E1 and∆E2). Using these information, we could clearly identify6He (Fig 1).

3. Results

To get the information for the level structure in26Si, we have measured the angular distribution
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Figure 2: Calibrated26Si excitation energy spectra are shown. The position information at focal plane was
calibrated by the well-known peaks.

at θlab = 8◦, 11◦, 15◦, and 20◦. The overall energy resolution was 100 keV (FWHM). Figure 2
shows the calibrated excitation energy spectra. The well-known states that were populated and
observed in the28Si(4He,6He)26Si reaction were used to calibrate with a quadratic polynomial
function (due to the relation between the energies and linear momenta) of the focal plane detector
position representing the linear momentum. Using the calibration function, at each angle, we
converted focal plane position into excitation energies in26Si. Then we determined excitation
energies using the weighted average value method. The states used for calibration were the ground
state and excited states in26Si at 0, 1795.9(0.2), 2783.5(0.4), 4445(3), and 4805(2) keV[11]. The
uncertainties of excitation energies were determined mainly by uncertainty in determining the6He
peak channels. The excitation energies in26Si (Ex > 5.5 MeV) are given in Table 1. The excitation
energies below the Ex = 5.5 MeV agree well with those from previous experimental results [5, 6,
7]. For Ex = 7676(4) keV and 7885(4) keV, our results reduce the uncertainties in the excitation
energies. We confirmed 7019(6) keV state which was observed only in (p,t) reaction study [5].
For 3+ resonant state, the study of(3He,6He) reaction [7] suggested spin-parity assignment of 3+

for the 5945 keV state by Coulomb shift calculation. The study of (3He,nγ) reaction [6] suggested
5912 keV as a 3+ resonant state based on the comparison between the measureddifferential cross
section with Hauser-Feshbach calculations. However, the(p, t) reaction study [5] assigned directly
5916 keV as a 0+ state by the distorted-wave Born approximation (DWBA) analysis. We observed
5918 keV state in our measurement within the error bar. To clarify this level information clearly,
spin-parity assignment by DWBA calculation is in progress.We expect that the results of DWBA
analysis will give accurate level information for candidates of 3+ resonant state. We also observed
several candidates for unnatural parity states at 5612 keV,5825 keV, 6004 keV and 6107(8) keV.
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(p, t) [5] (3He,nγ) [6] (3He,6He) [7] (4He,6He)a

Ex(keV) Jπ Ex(keV) Jπ Ex(keV) Jπ Ex(keV)

5515(5) (4+) 5515(4) 4+ 5526(8) 4+ 5508(3)

5670(4) 1+ 5678(8) 1+

5916(2) 0+ 5912(4) 3+ 5918(8)

5946(4) 0+ 5945(8) 3+

6300(4) 6312(4) 2+ 6364(4)b

6380(4) 6388(4) 2+ 6364(4)b

6471(4)

6787(4) 3− 6788(4) 3− 6787(4)

7019(10) 7018(6)

7160(5) 2+ 7152(4) 2+ 7161(6)

7425(7) 7425(4) 0+ 7429(7)

7498(4) 2+ 7493(4) 2+ 7480(20)
7687(22) 3− 7694(4) 3− 7676(4)

7900(22) 1− 7899(4) 1− 7885(4)
a This work.
b Average centroid of doublet peak.

Table 1: The excitation energies (units in keV) in26Si above 5 MeV from our measurement with the
previous results.

Further data analysis will be performed to find out the 3+ resonant states above proton threshold
level.
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