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The solar abundances provide a concept of universality that the abundance ratios of thep-nucleus

to thes-nucleus with the same atomic number are almost constant with the wide region for ma-

terials produced by individual stellar nucleosynthesis episode. We study this universality using

γ-process calculations with core-collapse supernova explosions under various conditions. The

calculated results show that theγ-process under the various conditions can occur but the ratios

are almost constant with the wide region independent of the conditions. The shift ofγ-process

layers, weaks-process and theβ -decay after theγ-process contribute to the manifestation of the

universality.
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Figure 1: A partial nuclear chart around Xe and Ba isotopes.

1. Introduction

The solar system abundance is a crucial record of nucleosynthesis episodes since the solar
system was formed from interstellar media originated from many different stellar nucleosynthesis
episodes in the Galaxy. The stellar conditions such as the mass, metallicity and explosion energy
are different and thus the abundance distribution of the solar system should be different with that
of individual nucleosynthesis episode. However, recent astronomical observations for some very
metal-deficient stars reported an epoch-making discovery of the "universal" abundance distribution
for the atomic number Z> 56, which are consistent with the abundance distribution of ther-process
nuclides in the solar system [1, 2].

We here focus attention to 35p-process isotopes (p-nuclei), which locate in the neutron-
deficient side from theβ -stability line and have small isotope abundances (typically 0.1∼ 1 %)
[3]. As the origin of thep-nuclei, Arnould proposed thep-process in pre-supernova phases [4],
and Woosley and Howard proposed theγ-process in supernovae (SNe) [5]. In these pioneering
work, thep-nuclei are synthesized mainly by photodisintegration reactions from pre-existing nu-
clei. Nevertheless, the origin of thep-nuclei has been discussed during about 50 years and many
nucleosynthesis processes have been proposed [6, 7, 8, 9, 10, 11, 12, 13]. In our previous paper
[14], we reported two empirical scaling laws in the solar system abundances, which are a piece of
evidence that the most probable origin of the 27p-nuclei isγ-process in SNe. These scalings lead
to a novel concept of "the universality of theγ-process" [14, 15]. The understanding of the mech-
anism of the universality is crucial for theγ-process and the Galactic chemical evolution (GCE) of
the p- ands-nuclei. We here present the analyses of the solar abundances and results ofγ-process
calculations under various astrophysical conditions.

2. Analyses of the solar system abundances

First we present analyses of the observed solar abundances [16]. There are 22p-nuclei asso-
ciated with almost pures-nuclei that have two more neutrons than thep-nuclei. The pures-nuclei
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Figure 2: The abundance ratios of thes-nuclei to p-nuclei with the same atomic number, N(s)/N(p). The
filled squares are the solar abundances. The open squares are the calculated results in a metal deficient model
with Z = 0.05Z¯, M = 25 M¯ andE = 1051 erg. The open circles are those in a heavier progenitor mass
model withZ = Z¯, M = 40 M¯ andE = 1051 erg. The open triangles are those in a high energy explosion
model withZ = Z¯, M = 25M¯ andE = 20× 1051 erg.

are dominantly synthesized by thes-process and shielded by stable isobars againstβ -decay after
the r-process. As shown in Fig.1, a typical example is found in Ba isotopes:132Ba is a p-nucleus
and134Ba is a pure s-nucleus shielded by an isobar134Xe against theβ -decay. We here discuss the
isotope abundance ratios of these two isotopes. Taking the abundance ratios of thes-nucleus to the
p-nucleus in the pair, N̄(s)/N̄ (p), where N̄ (s) and N̄ (p) are the solar abundances of thes- and
p-nucleus, respectively, we find an empirical scaling law that the ratios are almost constant in a
wide range of the atomic number, N¯(s)/N̄ (p)≈ 23, except for deviations (see Fig.2). Two large
deviations of Ce and W originate from the contamination of ther-process. Deviations of Mo and
Ru support a previous suggestion that their origin may be different with the otherp-nuclei. We also
find the second empirical scaling law between twop-nuclei with the same atomic number. Nine
elements have twop-nuclei. The first and secondp-nuclei are two and four neutron deficient from
thes-nucleus, respectively (see Fig.1). The ratios, N̄ (1st p)/N̄ (2nd p), are almost constant with
the wide region.

The first scaling shows a strong correlation betweenp- and s-nuclei with the same atomic
number, which indicates that the origin of mostp-nuclei is strongly correlated with thes-nuclei.
This is consistent with thep-process (orγ-process) in SN explosions [5, 7, 10]. The p-nuclei
are produced from heavy isotopes by photodisintegration reactions such as (γ,n) reactions in SN
explosions. In contrast, the other proposed models change the proton number as well as the neutron
number of the pre-existing seeds. Therefore, the first scaling is a piece of evidence that theγ-
process in SNe is the most promising origin of the 27p-nuclei.

The p-nuclei were produced in different stellar environments and thus the mass distribution of
synthesized nuclei may depend on the astrophysical conditions. Nevertheless, the scaling is found
in the solar system. This fact leads to a novel concept, "the universality of theγ-process", that the
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scaling, the N(s)/N(p) ratios are almost constant in the wide region, holds for materials produced
by individualγ-process.

3. γ-Process calculations in core-collapse supernovae

The universality of theγ-process is derived from the solar abundances but the reason why the
empirical scaling laws and universality appear in the solar abundances has remained an open ques-
tion. We calculate nucleosynthesis in oxygen-neon layers in core-collapse SN explosions under
various astrophysical conditions [17]. Massive stars evolve from main sequence to a core-collapse
stage and explode with explosion energy of1051 or 20× 1051 ergs [18]. We adopt the solar abun-
dances as the initial composition and calculate the weaks-process. We use a solar metallicityZ
= Z¯ and also a deficient metallicityZ = 0.05Z¯. The progenitor masses are 15, 25 and 40 solar
masses (M¯). Figure2 shows also results in three different models. They are (1) a metal deficient
model withZ = 0.05Z¯, M = 25M¯ andE = 1051 erg (squares in Fig.2), (2) a heavier progenitor
mass model withZ = Z¯, M = 40 M¯ andE = 1051 erg (circles), and (3) a high energy explosion
model withZ = Z¯, M = 25 M¯ andE = 20× 1051 erg (triangles). We would like to stress that
these calculated N(s)/N(p) ratios are almost constant in a wide region ofZ > 40 independent of the
astrophysical conditions.

The γ-process layers shifts in mass coordinate, whose range is dependent on the progenitor
mass and the explosion energy to keep an identical peak temperature range 1.7 - 3.5 109 K. This
shift are previously known [4, 5, 7, 10]. However, the scaling between thep- ands-nuclei cannot be
explained only by the layer shift. The first question we have to ask here is why the solar abundances
of the p-nuclei are proportional to those of thes-nuclei originated dominantly from asymptotic
giant branch (AGB) stars. The weaks-process produced newlys-nuclei in a mass region ofA <

90. However, the weaks-process has also a crucial role for a heavy mass region ofA > 90. The
mass distribution of the seeds is changed to that of the AGBs-process forA > 90 after the weak
s-process. The scaling does not strongly depend on the metallicity because the abundances of the
p-nuclei are proportional to that of the pre-existing seeds except a mass region ofA < 90. The
second question is why theβ -decay after the freezeout of theγ-process keep the scaling. Theβ -
decay may break the scaling since the mass distribution on the neutron-deficient side flow depends
on nuclear properties such as particle separation energies as well as astrophysical conditions. We
calculate the percentage of the abundance produced by theβ -decay to final abundance of each
p-nucleus. The percentage depends on the neutron number. Thep-nuclei in a mass region of 28
< N < 82 are dominantly produced by direct (γ,n) reactions. We find that theβ -decay after the
γ-process increases only the abundances of thes-nuclei for 50< N < 82 to manifest the constant
values in a wide mass region of 50< N < 128.

4. Summary

We present two empirical scaling laws observed in the solar system abundances, which are a
piece of evidence that the most probable origin of 27p-nuclei isγ-process in SNe and lead to a con-
cept "universality of theγ-process". We study the universality of theγ-process by usingγ-process
calculations in core-collapse supernova models. The calculated results indicate that even should the
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γ-process occur under the various conditions, the N(s)/N(p) ratios in each nucleosynthesis episode
result in almost constant value of the wide region independent of the SN conditions assumed. The
shift of γ-process layers, weaks-process and theβ -decay after theγ-process contribute to the
manifestation of the constant values of the N(s)/N(p) ratios.
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