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It has long been suggested that fission cycling may play an important role in the r-process. Fission
cycling can only occur in a very neutron rich environment. In traditional calculations of the
neutrino driven wind of the core-collapse supernova, the environment is not sufficiently neutron
rich to produce the r-process elements. However, we show that with a reduction of the electron
neutrino flux coming from the supernova, fission cycling does occur and furthermore it produces
an abundance pattern which is consistent with observed r-process abundance pattern in halo stars.
Such a reduction can be caused by active-sterile neutrino oscillations or other new physics.
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1. Introduction

The search for the r-process site has endured for some time now, yielding several promising
locations without a clear answer [1, 2, 3, 4]. The neutrino driven wind of the core-collapse su-
pernova remains promising and is attractive from the point of view of timescale arguments [5];
however, there still remain some unresolved difficulties, for example, those stemming from en-
tropy conditions [6] and the α effect [7, 8]. In the core-collapse supernova environment, several
physical modifications have been proposed to achieve an r-process, such as a fast outflow wind [7],
and active-sterile neutrino oscillations [9, 10]. A reduction in the electron neutrino,νe, flux would
be effective for producing a suitable environment for the nucleosynthesis of r-process elements.
In this contribution, we investigate the impact of such a reduction without tying it to a particular
mechanism. Although the outflow would be diminished by a lower neutrino luminosity, multi-
dimensional effects might compensate for this. Additionally, active-sterile neutrino oscillations
occur after the neutrino energy deposition has occurred, leaving the outflow unmodified.

2. Calculation and Comparison with Data

Observations of halo star abundances have yielded an r-process pattern remarkably similar to
that of the solar system [11], most strongly correlated in the region between the second and third
r-process peaks. In a nucleosynthesis calculation in the neutrino driven wind of the supernova with
the νe flux from the proto-neutron star reduced by a factor of ∼ 10, we find an r-process abundance
pattern in rough correspondence to the second and third peak regime of the solar system r-process,
as shown in Fig. 1. Our agreement range coincides with that of the halo star data; strengthening
the connection with supernovae, which would occur early in the evolution of the universe.
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Figure 1: Comparison of the abundance pattern produced by our full network calculation in a post-core
bounce supernova environment environment with the solar system [12] and halo star data [13]. The neutrino
and wind parameters were Lν = 0.8× 1050 ergs−1 and Lν̄ = 4× 1051 ergs−1, s/k = 100 with an outflow
timescale of τ = 0.3s.
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3. Fission Cycling

A mechanism within the r-process responsible for generating solely the nuclei above and be-
tween the second and third r-process peaks is fission cycling. While the role of fission has been
previously studied, e.g. [14], the exact details about which nuclei undergo fission and their daughter
products are unknown. Generally, heavy fissionable nuclei are expected to produce daughters with
atomic weights greater than the first r-process peak (A ≈ 80 & Z ≈ 35). During fission cycling
neutron capture not only builds up nuclei to such large atomic number that fission occurs, there are
still plenty of neutrons to capture on the daughter products of the fissioned nucleus. The daughters
effectively become new r-process seed nuclei. It is this build up of the daughters to high atomic
mass number, followed by fission creates the cycle. In Fig 2. we show that the onset of fission is
established for electron neutrino luminosities of Lνe < 1050 ergs−1 and for electron anti-neutrino
luminosities of Lν̄e > 1051ergs−1.
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Figure 2: The onset of fission as a function of supernova neutrino luminosities. The calculations shown in
this figure are of the neutrino driven wind environment of core collapse supernovae. The neutrino average
energies are 〈Eνe〉 = 11 MeV and 〈Eν̄e〉 = 16 MeV.

4. Steady β Flow

We evaluate the robustness of an r-process pattern which comes about due to fission cycling
by considering a schematic model of 56Fe seeds and a neutron excess. Peak heights are calculated
and plotted against neutron to seed ratio, Yn/Yh in Fig. 3. As the neutron abundance is increased to
a critical point, Yn/Yh ∼ 400, the second and third r-process peaks stabilize to constant values.

This stability comes about from fission cycling, which allows the material to establish steady
β flow. Steady β flow, see e.g. [14] for a review, comes about when electromagnetic and strong
interactions happen on a much faster timescale than beta decay. Neutron-capture and photo-
disintegration rates equilibrate marking (n,γ) � (γ ,n) equilibrium. Once (n,γ) � (γ ,n) equilibrium
occurs, the change in abundance, Y (Z,A), can be described in terms of the beta decay rates, λβ ,
between two adjacent chains in Z,
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Figure 3: The r-process peak heights as a function of neutron-to-seed ratio, for an exploratory calculation
that begins the r-process with 56Fe seeds. Above a neutron to seed ratio of Yn/Yh ≈ 400, fission cycling
occurs and final peak heights are independent of the neutron to seed ratio.

Ẏ (Z) = ∑
A

Y (Z −1,A)λβ (Z −1,A)−∑
A

Y (Z)λβ (Z,A). (4.1)

From this, the condition for steady β flow is

∑
A

Y (Z,A)λβ (Z,A) = const. (4.2)

Freezeout from steady β flow realizes a consistent r-process abundance pattern. The achieve-
ment of steady β flow is shown in Fig. 4, designated by the straight line of the more neutron-rich
case in comparison with the less neutron-rich case. Also important is that steady β flow occurs
over the region between the second and third r-process peaks; further demonstrating connection
with the halo star r-process data.

5. Conclusion

Fission cycling and steady β flow are promising mechanisms for establishing a robust second
and third r-process peak as seen in halo stars. In the neutrino driven wind of the supernova, this
can come about due to a decrease in the predicted electron neutrino flux. In neutrino driven wind
models with τ = 0.3 s and s/k = 100, we find fission cycling occurs for Lνe < 1050 ergs−1 and
Lνe > 1051ergs−1. These luminosities can come about from active-sterile neutrino oscillations, but
they may perhaps be generated from other new physics.
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Figure 4: Plot of abundance times the beta decay rate, ∑A Y (Z,A)λβ (Z,A), for the same type of calculation
shown in Fig. 3 for two different neutron excesses. The nearly constant value at high neutron excess means
that the constant peak heights in Fig. 3 can be attributed to steady β flow.
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