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We investigate the evolution of a universe with a decaying cosmological term (vacuum energy)
that is assumed to be a function of the scale factor. In this model, while the cosmological term
increases to the early universe, the radiation energy density is lower than the model with the cos-
mological "constant". We find that the effects of the decaying cosmological term on the expansion
rate at the redshiftz< 2 is negligible.

However, the decrease in the radiation density affects on the thermal history of the universe;

e.g. the photon decoupling occurs at higherz compared to the case of the standardΛCDM

model. As a consequence, a decaying cosmological term affects on the cosmic microwave back-

ground anisotropy. We show the angular power spectrum in DΛCDM model and compare with

the Wilkinson Microwave Anisotropy Probe (WMAP) data.
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1. Introduction

Recent observations (e.g. type Ia supernovae [1], the cosmic microwave background (CMB)
[2]) indicate that the cosmological term is necessary. If the cosmological term is constant from the
Planck time to the present, there is thecosmological constant problem: the present value of the
cosmological constant is extraordinarily small compared with an inferred vacuum energy during
the Planck time. To solve this problem, it is natural to consider that the cosmological term de-
creases from the large value at the early epoch to the present value. Many functional form of the
cosmological term has been suggested, e.g. the function of the scalar field [3]. On the other hand,
more physically motivated researches of varying vacuum energy (e.g. cosmic quintessence) have
been presented [4].

Cosmological constrains on and results of a decaying vacuum energy density have been inves-
tigated, where the ratio of vacuum to radiation energy was∼ 4×10−4 [5]. We note that vacuum
energy corresponds to a cosmological term in the present paper. The model with a decaying-Λ term
into the radiation has been found to affect the thermal evolution of the universe. Since the radiation
temperature is lower compared with the standardΛCDM (SΛCDM) model [6], the molecular for-
mation occurs at earlier epoch compared to the case of the SΛCDM [7]. Furthermore the model is
found to be consistent with the CMB temperature observations atz< 4 if appropriate parameters
are adopted [8].

In the present paper, we assume that theΛ term decays into the photon (hereafter we call
this the DΛCDM model) and investigate the CMB temperature fluctuation in the DΛCDM model.
Then, we constrain the parameters of the DΛCDM model.

2. A decayingΛ cosmology

Using the Friedmann-Robertson-Walker metric, the Einstein equation and the energy-momentum
conservation law are written as follows:

(
ȧ
a

)2

=
8πGN

3
ρ − k

a2 +
Λ
3

, (2.1)

ρ̇ +
Λ̇

8πGN
= −3

ȧ
a

(ρ + p) , (2.2)

wherea is the cosmic scale factor,k is the curvature andΛ is the cosmological term. The total
energy densityρ and the pressure are written as

ρ = ρm+ργ +ρν , p =
1
3

(
ργ +ρν

)
, (2.3)

where the subscriptsm,γ andν are the non-relativistic matter (baryon and cold dark matter), pho-
ton, neutrino, respectively. Here the energy density of matter and neutrinos varies asρm = ρm0a−3

andρν0 = ρνa−4, where the subscript0 means the present value. From eqs. (2.2) and (2.3), we get
the evolution of the photon energy density:

dΩγ

da
+4

Ωγ

a
= −

dΩΛ
da

. (2.4)
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Figure 1: Upper panel: the evolution of the photon temperatureTγ as a function of the scale factor in a
decayingΛ model. Lower panel: the ratio ofTγ for m= 0.5, 1.0, 1.2 relative tom= 0.

with

Ωi ≡
ρi

ρcrit
, ρcrit ≡

3H2
0

8πGN
, ΩΛ ≡ Λ

3H2
0

,

whereH0 is the Hubble constant in unit of km/sec/Mpc.
We assume a functional form ofΛ as follow [6, 7, 8, 9]:

ΩΛ = ΩΛ1 +ΩΛ2a−m. (2.5)

Note the present value ofΩΛ: ΩΛ0 = ΩΛ1 +ΩΛ2.
Following the Stefan-Boltzmann’s lawργ ∝ T4

γ , the photon temperature evolves as follows [8]:

Tγ =
Tγ0

a

[
1+

mΩΛ2

(4−m)Ωγ0

(
a4−m−1

)
]1/4

for m 6= 4 (2.6)

Tγ =
Tγ0

a

(
1+4

ΩΛ2

Ωγ0
lna

)1/4

for m= 4 (2.7)

whereΩγ0 = 2.471×10−5h−2(Tγ0/2.725K)4 is the present photon energy density,h is the Hub-
ble constant (H0 ≡ 100h km/sec/Mpc). Ifm and/orΩΛ2 are too large, the photon temperature is
negative at some epoch ofa < 1. By excluding this kind of solution, we obtain limits onΩΛ2 and
m from eq. (2.6): mΩΛ2/(4−m) < Ωγ0 for m< 4. In this parameter region, the first term in eq.
(2.5) dominate the universe at low-z. As the result, the effects of the second term in eq. (2.5) on
the expansion rate is negligible. ForΩΛ2 < 0 or m< 0, we find thatTγ becomes negative ata > 1.
Therefore we calculate under the condition ofΩΛ2 ≥ 0 andm≥ 0.

Figure 1 illustrates the evolution of the photon temperature in the DΛCDM model. The
adopted cosmological parameters are as follows:h = 0.73, Tγ0 = 2.725 K, ΩΛ0 = 0.763 and
k = 0 (flat universe). The photon temperature evolves asTγ ∝ a−1 and Tγ ∝ a−m/4 before and
during theΛ dominant epoch, respectively. Changes inTγ affects the cosmic thermal history sig-
nificantly [7], which should be constrained by the observations such as CMB anisotropy as we shall
show below.
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Figure 2: The angular power spectrum in a decayingΛ cosmology and WMAP observation data [2]. The
solid line is the result for the SΛCDM model. The dashed, the dot-dashed and the dotted lines are those of
DΛCDM model with(Ω,Λ2 ,m) = (10−4,0.5), (10−4,1.0) and(10−4,1.2), respectively.

3. CMB constraint

The CMB anisotropy observed by the WMAP constrains the cosmological model with very
high accuracy. In this section, we investigate the consistency of DΛCDM model with WMAP and
give the limit to the model parameters.

We calculate the CMB power spectrum by modifying CMBFAST code [10]. Figure2 shows
the angular power spectrum in the DΛCDM model. We adopt the following cosmological param-
eters: the baryon density parameterΩbh2 = 0.0223and the CDM density parameterΩCDMh2 =
0.104. We neglect reionization. Ifm (and/orΩΛ2) is small, the amplitude of the power spectrum
decreases. If we take larger values ofm, the first and third peaks of the CMB power spectrum in-
creases because of the large baryon density relative to the photon energy density. Furthermore the
CMB power spectrum shifts toward higher-l because the photon last scattering occurs at an earlier
epoch.

To obtain the upper limit ofΩΛ2 andm, we calculate the likelihood function given by Ref.
[11]. Figure3 shows 68.3%, 95.4% and 99.7% confidence limits on them−ΩΛ2 plane from CMB.
We obtain the constraintmΩΛ2/(4−m) < 4.9×10−6 at 95 % confidence limit. With the value of
this upper limit, the photon last scattering occurs at the earlier epoch by∆z∼ 30compared with that
in the SΛCDM model. Our constraint is severer than that from the observed radiation temperature
: |m| ≤ 1, |ΩΛ,2| ≤ 10−4 [8]. Therefore, the results indicate that a decaying-Λ contribution to the
cosmic thermal evolution should be small.

It should be noted thatΩbh2 has been fixed during the calculation for simplicity. If we operate
CMBFAST with Ωb varying, we can get the more reasonable parameter regions for the DΛCDM
model. Then the primordial abundances of He, D and Li would be different from those predicted
by WMAP.
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Figure 3: Constraint onm−ΩΛ2 plane from WMAP. Drawn lines correspond to 1, 2 and 3σ confidence
limit. The labeledno Big-Bangregion means thatTγ is negative ata < 1.
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