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We discuss the influence of mass predictions and mass distribution of fission products on the

formation of heavy elements on the final stages of the r-process in a very high neutron density

environment (e.g. neutron star mergers), when the recycling of the r-process due to fission has

occurred. Different evolution models as well as observations give the evidence of the existence

at least two different astrophysical scenario for the r-process. All the models can be divided

by duration of neutron exposition into two groups, in which the r-process nucleosynthesis is

responsible for the formation of different nuclei. Scenario, in which the long-time solution is

realized can be main for the formation of the most heavy nuclei. In such a scenario the important

role belongs to fission, which is responsible in part to the recycling r-process into the region

of nuclei with A= 120-140. But the utilization of new mass predictions and consistent reaction

rates in the r-process calculations leads to the strong disagreement with observations, especially

for nuclei in the vicinity of second peak at the abundance curve. We showed that the agreement

between calculations and observations can be achieved due to prompt fission neutrons, considered

as a part of the model of mass distribution of fission fragments.
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1. r-process in transuranium region and mass predictions.

The fission recycling is expected to be of significance [1] when the r-process duration becomes
long enough to transform the major part of seeds into the transuranium nuclei and to give back the
fission fragments into the r-process.

As a result of long duration of the r-process (long-time solution [1]) fission recycling occurs
and fission products became new seeds with masses in the vicinity of the second peak on the r-
element abundance curve and quasi equilibrium in formation of abundances between second peak
and fission region can be reached. In this case the mass distribution of fission products (along with
the consistent nuclear data such as the mass excess, fission barriers and reaction rates) is important
for the production of nuclei with A∼130.

As a model realizing the long-time solution we used one of the model calculations of neutron
star merger [2] with the average initial value of neutron excess, defined byYe=0.1. In the r-process
processing for this model the number of species due to fission recycling was approximately dou-
bled.

In our r-process calculations, along with the neutron rates [5, 4] we use new set of fission
rates [3]. The fission barrier predictions, used in calculations of the fission rates [3], were based on
the new improvement of Extended Thomas-Fermi model with Strutinsky integral (ETFSI) [8], or
Thomas-Fermi model [6], and mass predictions in accordance with [7, 9]. These data unfortunately
made worse the agreement between observations of nuclear abundances and calculations, especially
for mass region120< A < 140 and strong shift of the calculated second peak on the abundance
curve from position around A∼130 in the region of bigger masses occurs (Fig.1) in compare with
previous calculations [11], where the agreement with observations was good enough. The explana-
tion is rather obvious - in comparison to the previously used mass formulae [13, 14], based on Hilf
et al. mass predictions [13] and FRDM rates [12] the utilization of discussed consistent mass and
fission barrier predictions (ETFSI or Thomas-Fermi) shifts the neutron drip line in the direction of
heavier masses. For example, the mass prediction of [13] defines the atomic mass of the heaviest
Cf isotope A=279, while the other mass model discussed above (ETFSI) predicts the existence of
Cf isotopes heavier than A=300.

Problem is that for very high neutron density environments, when the r-process passes along
(or near) the neutron drip-line, even the mass of light fission fragment when new mass predictions
[6, 8] is applied can be greater than 130. Previously introduced mass distribution of fission frag-
ments in the model of binary fission [10] was sufficiently good for getting the agreement between
calculations and observation of heavy element abundances when FRDM mass predictions were
used. In case when new mass predictions is applied, the neutron drip-line (and the r-process path
also) turns out to be shifted to the region of more heavier isotopes.

The previous calculations of the r-process used a very simple models of binary fission, when
only two fragments were taken into account in model of symmetric [5] or asymmetric [1] fission
and prompt fission neutrons were not taken into account. As a result, the r-process in actinoide
region goes on nuclei with atomic masses 280-300 instead of 250-260 when HM barrier and mass
predictions were used [15].

When the calculations of the r-process with new rates but with old model of mass distribution
of fission products have been done, the average masses of the or fission fragments increase, mostly
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exceed 130 and the position of the second peak on the calculated abundance curve does not re-
produce the observed one. One of the possible explanation of the shift - incomplete description of
mass distribution of fission fragments. Adopted in our previous works [11, 10, 3] model of fission
products mass distribution, included in part the symmetric fission into to equal fission fragments
for all nuclei with atomic massesA > 260, was not contradict the experimental data, thou did not
take into account the prompt fission neutrons. But for up-to-date nucleosynthesis calculations with
new nuclear rates, mass excesses and fission barriers predictions the introduction of prompt fission
neutrons into the model of fission products mass predictions is urgent and should remove away "the
excess of mass" and restore the agreement between calculations and observations.
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Figure 1: Calculated r-process abundances, used FRDM-data (line) and ETFSI mass-predictions (dashed
line); circles - ss-abundance. Simple mass distribution model without prompt neutrons is used.

2. Mass distribution of fission fragments and calculations.

Previously [10] it was shown that combination of symmetric and asymmetric fission applied to
the model of binary fission gave better agreement with observations especially with utilization mass
distribution of Itkis et al. [18] for asymmetric fission instead of the expansion mass distribution
for U235 for all nuclei [1]. Only two fission products were considered neglecting prompt fission
neutrons with "averaged" values of fission product masses, defined asA1 = 130,Z1 = 52− (Zf −
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80)∗2/20andA2 = Af −A1,Z2 = Zf −Z1 in case when atomic number of mother nucleusAf < 260
and symmetric fission otherwise. But for the r-process modelling with rates on the base of new mass
predictions this model turns out too reductive.

According to the nuclear systematics [19, 20, 21] the multiplicity of prompt neutrons increases
with increasing of both atomic number and mass number. The simple model of binary fission, when
only fission fragments were considered we enriched by the emission of prompt neutrons.

In our present calculations we also added prompt fission neutrons into the mass model distri-
bution and increased the number of fission products up to 40 daughter nuclei, with weight functions
of isotope yields based on nuclear systematics. Thus we considered(Zf ,Af )→∑i, j pi j ∗ [(Zi ,Ai)+
(Z j ,A j)+νi j ∗n], where∑i, j pi j = 1 andZf = Zi +Z j , Af = Ai +A j +νi j for anyi, j. Neutron mul-
tiplicity per fissionνi j is the linear function ofAf andAf −Zf . It is equal neutron multiplicity for
experimentally known nucleiνp ≈ 2−4 and is extrapolated into neutron rich region up to values
ν ≈ 20near neutron drip-line. The extreme number of free neutrons is in agreement with published
results [16] of neutron multiplicities, based on semi-empirical Monte-Carlo calculations [17].
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Figure 2: r-process abundances: circles - ss-abundance; line - present calculations with mass distribution
model included prompt and delayed neutrons. ETFSI mass and rates predictions are used.

The details of fission of very neutron rich nuclei are not known, because such nuclei can not be
investigated experimentally and theory predictions have a very short range. It is difficult to say what
kind of emission - prompt or delayed neutrons will be important during fission of such an exotic
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nuclei. But no doubts the neutrons should be emitted - mass predictions show that fission fragments
after the fission of very neutron rich nuclei in number of cases are unbound and only evaporation
of neutrons or other light particles can lead to the bound nuclear configurations. For simplicity we
consider all neutrons are prompt, because this proposition does not influence significantly upon the
r-process yields.

Described above model of mass distribution of fission fragments with taking into account
prompt fission neutrons was included in our calculations and received r-element abundances agree
well with the observations (Fig.2). Of course the extrapolation accuracy of calculated neutron
multiplicity in the region of very neutron rich nuclei may be not very high, but it is the problem
of all nuclear data for experimentally unknown nuclei. Only the development of theory and future
experiments can clarify the problem.

3. Conclusions

In numerical calculations of the r-process it was shown that utilization of self-consistent nu-
clear data (mass predictions and reaction rates on the base of ETFSI or Thomas-Fermi models)
and simple model of binary fission leads to the disagreement between observations and calculated
abundances.

When the fission model was enriched by taking into account the neutron multiplicity, the
masses of fission fragments decreased and agreement between observations and calculations was
restored. For the majority cases at least one of the fragments became lighter than 130 and recycling
of the r-process occurs into the region before the second peak, that restored the agreement with
observations for the nuclear yields in the vicinity of A∼ 130.

Consideration of detailed mass distribution with taking into account up to 20 different species
for every fission product leads to smoothing effect of yields for nuclei around 130 and below. The
utilized model of mass distribution is confirmed by detailed calculations of fission product mass
distribution for different nuclei, at least for atomic mass numbers A≥ 260 [16]. We consider the
further understanding of mass distribution of fission fragments will lead to the more accurate fission
model. In asymptotic case this model should approach the mass distribution of experimentally
known nuclei.
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