

Measurement of the ^{90,91,92,94,96}Zr neutron capture cross sections at n_TOF

Giuseppe Tagliente^{*}

Istituto Nazionale Fisica Nucleare sez. Bari Via Orabona,4 Bari, Italy

E-mail: giuseppe.tagliente@ba.infn.it

for the n_TOF collaboration:

U. Abbondanno²⁰, G. Aerts⁷, H. Álvarez³⁵, F. Alvarez-Velarde³¹, S. Andriamonje⁷, J. Andrzejewski²⁶, P. Assimakopoulos¹⁶, L. Audouin¹², G. Badurek¹, P. Baumann¹⁰, F. Bečvář⁶, E. Berthoumieux⁷, F. Calviño³⁴, D. Cano-Ott³¹, R. Capote^{3,36}, A. Carrillo de Albornoz²⁷, P. Cennini³⁷, V. Chepel1²⁸, E. Chiaveri³⁷, N. Colonna¹⁹, G. Cortes³³, A. Couture⁴¹, J. Cox⁴¹, M. Dahlfors³⁷, S. David⁹, I. Dillmann¹², R. Dolfini²³, C. Domingo-Pardo³², W. Dridi⁷, I. Duran³⁵, C. Eleftheriadis¹³, M. Embid-Segura³¹, L. Ferrant⁹, A. Ferrari³⁷, R. Ferreira-Marques²⁸, L. Fitzpatrick³⁷, H. Frais-Koelbl³, K. Fujii²⁰, W. Furman³⁰, C. Guerrero³¹, I. Goncalves²⁸, R. Gallino²², E. Gonzalez-Romero³¹, A. Goverdovski²⁹, F. Gramegna¹⁸, E. Griesmayer³, F. Gunsing⁷, B. Haas⁸, R. Haight³⁹, M. Heil¹², A. Herrera-Martinez³⁷, M. Igashira²⁵, S. Isaev⁹, E. Jericha¹, Y. Kadi³⁷, F. Käppeler¹², D. Karamanis¹⁶, D. Karadimos¹⁶, M. Kerveno¹⁰, V. Ketlerov^{29,37}, P. Koehler⁴⁰, V. Konovalov^{30,37}, E. Kossionides¹⁵, M. Krtička⁶, C. Lamboudis¹³, H. Leeb¹, A. Lindote²⁸, I. Lopes²⁸, M. Lozano³⁶, S. Lukic¹⁰, J. Marganiec²⁶, L. Marques²⁷, S. Marrone¹⁹, C. Massimi²¹, P. Mastinu¹⁸, A.Mengoni^{3,37}, P.M. Milazzo²⁰, C. Moreau²⁰, M. Mosconi¹², F. Neves²⁸, H. Oberhummer¹, S. O'Brien⁴¹, M. Oshima²⁴, J. Pancin⁷, C. Papachristodoulou¹⁶, C. Papadopoulos¹⁴, C. Paradela³⁵, N. Patronis¹⁶, A. Pavlik², P. Pavlopoulos¹¹, L. Perrot⁷, R. Plag¹², A. Plompen⁵, A. Plukis⁷, A. Poch³³, C. Pretel³³, J. Quesada³⁶, T. Rauscher³⁸, R. Reifarth³⁹, M. Rosetti¹⁷, C. Rubbia²³, G. Rudolf⁴⁰, P. Rullhusen⁵, J. Salgado²⁷, L. Sarchiapone³⁷, I. Savvidis¹³, C. Stephan⁹, J.L. Tain³², L. Tassan-Got⁹, L. Tavora²⁷, R. Terlizzi¹⁹, G. Vannini²¹, P. Vaz²⁷, A. Ventura¹⁷, D. Villamarin³¹, M.C. Vincente³¹, V. Vlachoudis³⁷, R. Vlastou¹⁴, F. Voss¹², S. Walter¹², H. Wendler³⁷, M. Wiescher⁴¹, and K.Wisshak¹²

The n_TOF Collaboration

¹Atominstitut der Österreichischen Universitäten, Technische Universität Wien, Austria,
²Institut für Isotopenforschung und Kernphysik, Universität Wien, Austria,
³International Atomic Energy Agency (IAEA), Nuclear Data Section, Vienna, Austria
⁴Fachhochschule Wiener Neustadt, W iener Neustadt, Austria,
⁵CEC-JRC-IRMM, Geel, Belgium,
⁶Charles University, Prague, Czech Republic,

⁷CEA/Saclay - DSM, Gif-sur-Yvette, France,

⁸Centre National de la Recherche Scientifique/IN2P3 - CENBG, Bordeaux, France,

⁹Centre National de la echerche Scientifique/IN2P3 - IPN, Orsay, France,

¹⁰Centre National de la Recherche Scientifique/IN2P3 - IReS, Strasbourg, France,

¹¹Pôle Universitaire Léonard de Vinci, Paris La Défense, France,

^{*} Speaker

 $[\]textcircled{\sc copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.}$

¹²Forschungszentrum Karlsruhe GmbH (FZK), Institut für Kernphysik, Germany, ¹³Aristotle University of Thessaloniki, Greece, ¹⁴National Technical University of Athens, Greece ¹⁵NCSR, Athens, Greece, ¹⁶University of Ioannina, Greece, ¹⁷ENĚA, Bologna, Italy, ¹⁸Istituto Nazionale di Fisica Nucleare(INFN), Laboratori Nazionali di Legnaro, Italy, ¹⁹Istituto Nazionale di Fisica Nucleare, Bari, Italy, ²⁰Istituto Nazionale di Fisica Nucleare, Trieste, Italy, ²¹Dipartimento di Fisica, Università di Bologna, and Sezione INFN di Bologna, Italy, ²²Dipartimento di Fisica, Università di Torino and Sezione INFN di Torino, Italy, ²³Università degli Studi Pavia, Pavia, Italy, ²⁴ Japan Atomic Energy Research Institute, Tokai-mura, Japan, ²⁵Tokyo Institute of Technology, Tokyo, Japan, ²⁶University of Lodz, Lodz, Poland ²⁷Instituto Tecnológico e Nuclear(ITN), Lisbon, Portugal, ²⁸LIP - Coimbra & Departamento de Fisica da Universidade de Coimbra, Portugal, ²⁹Institute of Physics and Power Engineering, Kaluga region, Obninsk, Russia, ³⁰ Joint Institute for Nuclear Research, Frank Laboratory of Neutron Physics, Dubna, Russia, ³¹Centro de Investigaciones Energeticas Medioambientales y Technologicas, Madrid, Spain, ³²Istituto de Física Corpuscolar, CSIC-Universidad de Valencia, Spain, ³³Universitat Politecnica de Catalunya, Barcelona, Spain, ³⁴Universidad Politecnica de Madrid, Spain, ³⁵Universidade de Santiago de Compostela, Spain, ³⁶Universidad de Sevilla, Spain, ³⁷CERN, Geneva, Switzerland, ³⁸Department of Physics and Astronomy - University of Basel, Basel, Switzerland, ³⁹Los Alamos National Laboratory, New Mexico, USA, ⁴⁰Oak Ridge National Laboratory, Physics Division, Oak Ridge, USA, ⁴¹University of Notre Dame, Notre Dame, USA,

The neutron capture cross sections of ^{90,91,92,94,96}Zr, which play a key role for the determination of the neutron density in the He burning zone of the Red Giant stars, were measured over the energy range from 1 eV to 1 MeV at the spallation neutron facility n_TOF at CERN. Based on these data the capture resonance strength and the Maxwellian-averaged cross section at 30 keV were calculated.

International Symposium on Nuclear Astrophysics – Nuclei in the Cosmos – IX CERN, Geneva, Switzerland 25-30 June, 2006

1. Introduction

The neutron capture cross sections of the Zr isotopes are particularly relevant, since zirconium belongs to the first *s*-process peak in the solar abundance distribution at A \approx 90. Although there is no *s*-only Zr isotope, the abundance of the neutron magic isotope ⁹⁰Z is predominantly of *s*-process origin because of its low (*n*, γ) cross section [1]. In a similar way, this holds for the other even Zr isotopes as well. The most neutron rich one, ⁹⁶Zr, is traditionally considered to be an *r*-only isotope with a small but significant *s*-process admixture due to an *s*-process branching at ⁹⁵Zr [2, 3]. Since this branching is open only at comparably high neutron densities, it is considered to be an important indicator for the efficiency of the ²²Ne neutron source during the He shell burning episodes of thermally pulsing asymptotic giant branch (AGB) stars [3].

The major motivation of the present measurement was to reduce the uncertainties of previous data for improving the abundance predictions by stellar *s*-process models. This will then allow for a more reliable interpretation of the abundance data from astronomical observations. This is important because AGB stars are cool enough that their atmospheres contain ZrO, which allows one to deduce isotopic patterns via the molecular ZrO bands [4]. Complementary information was obtained from analyses of single, presolar SiC grains, which witness the composition of *s*-processed material from the circumstellar envelopes of AGB stars [5,6]. In both cases, the observed 96 Zr/ 94 Zr ratios are smaller than expected. Whether these results will have consequences for the stellar models can only be discussed on the basis of improved neutron capture cross sections.

2. Experimental set-up

The neutron capture cross sections of 90,91,92,94,96 Zr have been measured with high resolution at the n_TOF facility at CERN. The experiment was carried out at a flight path of 185 m, using two C₆D₆ detectors for recording the prompt capture γ -rays. The detectors, which are designed for minimized neutron sensitivity [7], were mounted perpendicular to the neutron beam at a distance of about 3 cm from the beam axis. The background due to in-beam γ -rays was reduced by placing the detectors 9 cm upstream of the sample position. The γ -response was calibrated by means of standard 137 Cs, 60 Co, and Pu/C sources. The data were acquired with fast flash ADC using the standard n_TOF data acquisition system [8]. The zirconium samples were prepared from oxide powder, which was pressed to pellets 22 mm in diameter and encapsulated in a thin walled aluminium can. The relevant sample characteristics have been reported previously [9].

3. Analysis and results

The data analysis is based on an accurate calibration of the C_6D_6 detectors. Ambient and sample related backgrounds were subtracted by means of the spectra measured with an empty Al can and with a Pb sample. The absolute normalization of the capture yields has been made

with an accuracy of 3% via the spectrum measured with a Au sample The Pulse Height Weighting Technique (PHWT) [10] is applied to the C_6D_6 capture data in order to achieve a cascade detection independent of the particular de-excitation path. The respective weighting functions are sensitive to the experimental set-up, including the investigated sample. These functions were derived by detailed Monte Carlo simulations. Fig 1 shows the capture yield for the ⁹⁶Zr sample compared with the background obtained with the empty aluminium can. The background measured with the Pb sample corresponds to the effect of in-beam γ -rays, which are predominantly produced by (n, γ) reactions in the water moderator surrounding the spallation target.

A resonance analysis of the experimental yield was performed with the R-matrix code SAMMY [11]. Due to the high energy resolution of the n_TOF facility many new resonances were found. The resonance parameters measured at n_TOF are for all the Zr samples in general 10-20% smaller than previously reported. This is illustrated in Figure 2, which shows the comparison of the neutron capture kernels $g\Gamma_{\gamma}\Gamma_{n}/\Gamma_{tot}$ for the ⁹⁶Zr resonances with those reported in the JENDL3.3 database (wwwndc.tokai-sc.jaea.go.jp/jendl/).

In order to study the s-process abundances, the Maxwellian averaged cross sections (MACS) are required over a range of thermal energies. Preliminary MACS at 30 keV are compared in Table 1 with recommended values derived from previous data [1].

	1	
Isotope	n_TOF	Bao et al. [1]
⁹⁰ Zr	19±1	21±2
⁹¹ Zr	57±3	60±8
⁹² Zr	29±2	33±4
⁹⁴ Zr	35±2	26±1
⁹⁶ Zr	7.5±0.4	10.7±.5

Table 1. Preliminary MACSs for kT=30 keV compared with recommended values derived from previous data.

In spite of the differences found in the capture kernels, the present MACSs of the lighter Zr isotopes are in fair agreement with the data of Ref.[1] but were determined with significantly better accuracy. For ⁹⁴Zr and ⁹⁶Zr, where rather accurate values were reported from an activation measurement [3], we find discrepancies far beyond the quoted uncertainties. These two isotopes are important, because their cross sections are decisive for the analysis of the *s*-process branching at ⁹⁵Zr and for the final ⁹⁶Zr/⁹⁴Zr ratio. The present results favour an increase of this ratio, in contradiction to observations in the atmospheres of AGB stars [4] and in pre-solar grains [5, 6]. Therefore, it remains to be investigated whether the ⁹⁵Zr branching can be consistently described by the s-process models for the He burning layers of AGB stars.

3. Conclusions

The neutron capture cross sections of ^{90,91,92,94,96}Zr have been measured at the CERN n_TOF facility with high resolution and with an improved experimental set-up. In this way, systematic uncertainties could be significantly improved. In general, capture kernels were found to be systematically smaller than previously reported. In some cases, this effect was compensated by many new resonances, so that the MACSs in the relevant range of thermal energies remain almost unchanged. The results for ⁹⁴Zr and ⁹⁶Zr present a challenge for stellar models to explain the low values of the ⁹⁶Zr/⁹⁴Zr abundance ratios found in presolar grains.

This work was supported by the EC under contract FIKW-CT-2000-00107 and by the funding agencies of the participating institutes.

References

- [1] Z.Y. Bao et al., Atomic Data Nuclear Data Tables 76, 70-154 (2000).
- [2] F. Käppeler, Prog. Nucl. Part. Phys. 43, 419 (1999).
- [3] K.A. Toukan, K. Debus, F. Käppeler, and G. Reffo, Phys. Rev. C51, 1540 (1995).
- [4] D.L. Lambert, V.V. Smith, M. Busso, R. Gallino, and O. Straniero, Ap.J. 450, 302 (1995).
- [5] M. Lugaro, A.M. Davis, R. Gallino, J. Pellin, O. Straniero, and F. Käppeler, Ap.J. 593, 486 (2003).
- [6] G.K. Nicolussi et al., Science 277, 1281 (1997)
- [7] C.Borcea et al., Nucl. Instr. Meth. A 513, 523 (2003).
- [8] R. Plag et al., Nucl. Instr. Meth. A 538, 692 (2005).
- [9] G. Tagliente at al., Nuclear Physics A758, 573c (2005).
- [10] U. Abbondanno et al., Nucl. Instr. Meth. A 521, 454 (2004).
- [11] N.M. Larson, Report ORNL/TM-979, Oak Ridge National Laboratory (2000).