Photodisintegration of 80Se as a probe of neutron capture for the s-process branch-point nucleus 79Se

A. Makinaga, H. Utsunomiya, S. Goko, T. Kaihori, H. Akimune, T. Yamagata,
S. Hohara*
Department of Physics, Konan University, Japan
E-mail: hiro@konan-u.ac.jp (H. Utsunomiya)

S. Goriely
Institut d’Astronomie et d’Astrophysique, Université Libre de Bruxelle, Belgium
E-mail: sgoriely@astro.ulb.ac.be

H. Toyokawa, H. Harano, T. Matsumoto
National Institute of Advanced Industrial Science and Technology, Japan

H. Harada, F. Kitatani, K.Y. Hara
Japan Atomic Energy Agency, Japan

Y.-W. Lui
Cyclotron Institute, Texas A & M University, USA

Photoneutron cross sections were measured for 80Se near the neutron separation energy with the laser Compton scattering γ rays. The stellar neutron capture rate for 79Se was evaluated by using the photodisintegration data as constraints on the E1 γ strength function within the framework of the Hauser-Feshbach statistical model. The result is compared with the model calculation of Bao and Käppeler.

International Symposium on Nuclear Astrophysics — Nuclei in the Cosmos — IX
June 25-30 2006
CERN, Geneva, Switzerland

*permanent address: Kinki University, Japan

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/
1. Introduction

Abundances of the s-only nuclei, 80Kr and 82Kr, are sensitive to the s-process branching at 79Se. Major fractions of these nuclei originate from the weak s-process which takes place in the core-helium burning of massive stars with a neutron source of the 22Ne(α,n) reaction [1]. The stellar condition for the nucleosynthesis of the weak s-process component can be locally examined provided that a competition between β^- decay and neutron capture at 79Se is highly sensitive to the stellar temperature and neutron density. The half life of 79Se in the ground state is less than 65,000 years [3] and may be greater than the assumed value, 1,700 years [2]. In contrast to the long half life of the ground state, the first excited state of 79Se at 96 keV, which is thermally populated in the stellar condition, undergoes β^- decay to 79Br with the half life 7000 minutes[2]. As a result, the stellar β-decay rate is highly sensitive to temperature [2, 4]. On the other hand, the stellar neutron capture rate for 79Se depends on both the neutron density n_n of the relevant stellar site and neutron capture cross sections $\sigma_{n\gamma}$. Up until now, $\sigma_{n\gamma}$ has remained experimentally unknown though a direct measurement is planned at the CERN n-TOF facility in the future [5].

We have measured photoneutron cross sections ($\sigma_{\gamma n}$) for 80Se to evaluate $\sigma_{n\gamma}$ for 79Se within the framework of the Hauser-Feshbach model. In the model calculation, the experimental $\sigma_{\gamma n}$ is used as constraints on the low-energy E1 γ strength function for 80Se. Uncertainties associated with the nuclear level density are taken into account. It is to be noted that the present $\sigma_{\gamma n}$ constitutes the basic nuclear data for nuclear transmutation of a long-lived fission product 79Se.

2. Experiment

Beams of quasi-monochromatic γ rays were produced in the energy range of 9.98 - 11.80 MeV from laser Compton scattering (LCS) in the electron storage ring TERAS at AIST. The LCS γ-ray beams were used to irradiate a sample of 1003.3g 80Se enriched to 99.95% that is encapsulated in an aluminum container. A Nd:YVO$_4$ Q-switch laser was operated at 20 kHz in the second harmonics ($\lambda = 532$ nm). The γ-ray beams had the same macroscopic time structure of 80 ms beam-on and 20 ms beam-off as that of the laser. The 80Se sample was mounted at the center of a 4π-type neutron detector consisting of 20 3He counters embedded in a polyethylene moderator in a triple-ring configuration. Background neutrons were detected during the 20 ms beam-off. The neutron detection efficiency is more than 56% in the neutron energy range below 1 MeV. The so-called ring ratio technique [6] was used to determine the average neutron energies. The LCS γ beam was measured with a 120% high-purity germanium detector (HPGe). The energy distribution of the LCS beam was determined by a least-squares analysis of the response function of the HPGe detector. The LCS beam was monitored with a large volume (8" in diameter \times 12" in length) NaI(Tl) detector. Pile-up spectra were used to determine the number of the incident LCS γ rays. Photoneutron cross sections were determined at the average γ-ray energies with the Taylor expansion method [7]. The systematic uncertainty for the cross section is 4.4% whose breakdown is 3.2% for the neutron detection efficiency and 3% for the number of incident γ rays.

3. Photoneutron cross sections for 80Se

Results of the present photoneutron cross section measurement for 80Se are shown in Fig. 1.
Photodisintegration of ^{80}Se as a probe of neutron capture for the s-process branch-point nucleus ^{79}Se

Figure 1: The present result of photoneutron cross sections for ^{80}Se near the neutron threshold. For comparison, the data of Carlos et al. [10] taken with the positron annihilation γ rays are shown.

Figure 2: Stellar neutron capture rates for ^{79}Se evaluated within the framework of the Hauser-Feshbach model by using the present photoneutron cross section for ^{80}Se as constraints on the E1 γ strength function.

One can see that the present $\sigma_{\gamma n}$ are significantly smaller than those of the previous measurements near the neutron threshold. Hauser-Feshbach model calculations were carried out based on different ingredients of model parameters: Lorentzian [8] and QRPA [9] models for the E1 γ strength function and back-shifted Fermi gas (BSFG) and combinatorial models[11, 12] for the nuclear level density. Two calculations with the Lorentz - BSFG and the combinatorial - QRPA model parameters satisfactorily reproduce the present cross sections near the neutron threshold.
4. Stellar neutron capture rates for 79Se

Neutron capture cross sections were evaluated for 79Se by using the same ingredients of the model parameters that were found for the present cross section for 80Se(γ,n)79Se. Fig. 2 shows $\langle \sigma_{n\gamma} \rangle$ as a function of the stellar temperature in units of keV. The result with the BSFG-Lorentz model parameters is similar to that of Bao and Käppeler [13], whereas the reaction rate is enhanced with the combinatorial-QRPA model parameters. The difference in the two model calculations stems from their different behaviors of the E1 γ strength function below the neutron separation energy and the nuclear level density. Implications of the present reaction rates for the stellar condition for the weak s-process component will be investigated in the future.

This work was supported by the Japan Private School Promotion Foundation and the Japan Society of the Promotion of Science.

References