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Astronomical Distance Scales
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Astronomical Distance Scales

⇐ 50 Million light years⇒⇒
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Looking Back in Time
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Space and time

Space is three dimensional and all

points are alike. There are three

possible realizations of a

homogeneous isotropic space.

Space and time make dynamical

framework
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Dynamical Frameworks

Einstein equations

Rµν − 1
2gµνR = 8πG Tµν

Crucial assumption: The Universe is homogeneous.

Friedmann solution: The Universe should expand.

ds2 = dt2 − a2(t) dl2
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Space-time metric

ds2 = dt2 − a2(t) dl2

dl2 =
dr2

1 − k r2
+ r2 (dθ2 + sin2 θ dφ2)

(3)R =
6k

a2(t)

8<:
k = −1 Open
k = 0 Flat
k = +1 Closed
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Friedmann equations

Assume ideal fluid for the energy momentum tensor

Tµν =


ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p


Einstein equations written for homogeneous isotropic world give

(
ȧ

a

)2

=
8πG

3
ρ −

k

a2

ä

a
= −

4πG

3
(ρ + 3 p)
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Friedmann equations: the physics behind

Friedmann equation(
ȧ

a

)2

=
8πG

3
ρ −

k

a2

has familiar Newtonian counterpart. Indeed

1

2
ȧ2 −

4πG

3
ρ a2 = −

k

2

With r = a r0 and M = 4π
3 ρ r3 Friedmann equation takes

the form of energy conservation for a test particles bounded in

the gravitaional potential

1

2
ṙ2 −

G M

r
= −

k r2
0

2
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Geometry versus Universe future

1

2
ṙ2 −

G M

r
= −

k r2
0

2

k = +1 Binding energy negative

Universe will recollapce

k = −1 Binding energy positive

Universe will expand forever

k = 0 Critical density ρc ≡ 3
8πG

(
ȧ
a

)2

(
ȧ

a

)2

=
8πG

3
ρ −

k

a2
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Hubble law

To find critical density ρc ≡ 3
8πG

(
ȧ
a

)2
one needs to know

H ≡
ȧ

a
Hubble “constant′′

Using r(t) = a(t)r0 one can find the velocity with which

distance between two points increases

v ≡ ȧr0 =
ȧ

a
ar0 = Hr

This gives the Hubble law v = H r

Horizon: v ∼ 1 at r ∼ H−1

But at r � H−1 Newtonian mechanics should be valid
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Expansion of the Universe

Newton did not know that one should

worry about horizons, but he worried

why the Universe does not collapse

under the pull of gravity.

In 1917 Einstein added cosmological

constant to his equations thinking it will

provide static solutions.

In 1922 Friedmann had shown that the

Universe must expand as a whole. After

some debate Einstein admitted mistake

and called the introduction of a

cosmological constant “the greatest

blunder of my life”.
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Initial conditons

Why the Universe did not collapsed under the

pull of gravity ?

Resolution is in awkward initial conditions called Big Bang

1

2
ṙ2 −

G M

r
= −

k r2
0

2

which imply enormous fine-tuning and which are hard to accept.

We will see how the modern inflationary cosmology solves this

problem of initial conditions.
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Cosmological Parameters

Introduced to parametize Fiedmann equation and its solution a(t)

t Age

H = ȧ/a Hubble “constant” at time t

ρc = 3H2/8πG Critical density

Ω = ρ/ρc ΩB = ρB/ρc, Ωr = ρr/ρc, . . .
q = −äa/ȧ2 Decceleration parameter

Present values t0, H0, . . . are called cosmological parameters

t0 = (13.7 ± 0.2) Gyr

H0 ≡ 100 h km s−1 Mpc−1, where h = 0.71 ± 0.04
ρc = 10 h2 GeV m−3

Ω0 = 1.02 ± 0.02
q0 = −0.6 ± 0.3
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Matter content in the Universe

Light. (Relativistic degrees of freedom)

Major energy fraction at early times.

Baryonic matter. (Stars)

Observable world today.

Dark matter. (Should be there)

Major matter fraction today.

Dark energy. (Vacuum)

Major energy fraction today.
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Equation of state

Definition: w ≡
p

ρ

If w = const, conservation of energy gives ρ = a−3(1+w) ρ0

Ordinary forms of matter

Radiation .................... w = 1
3 ....... ρ = a−4 ρ0

Matter ........................ w = 0 ....... ρ = a−3 ρ0

Hypothetical matter

Cosmic strings ............. w = −1
3 ..... ρ = a−2 ρ0

Domain walls ............... w = −2
3 ..... ρ = a−1 ρ0

Cosmological constant ... w = −1 ..... ρ = const
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Law of expansion

Friedmann equation in spatially flat Universe(
ȧ

a

)2

=
8πG

3
ρ

for w = const gives

a =

(
t

t0

) 2
3(1+w)

In particular

Radiation ..... w = 1
3 ..... a = (t/t0)1/2

Matter ......... w = 0 ..... a = (t/t0)2/3
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Hot Big Bang

In the past the Universe was dense and therefore hot
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Friedmann equations: the physics behind

One of the two Friedmann equations can be excluded in favour of

dρ

dt
+ 3

ȧ

a
(ρ + p) = 0

which is nothing but energy-momentum conseravtion

T µν
;ν = 0

And this is nothing but the First Law of thermodynamics

dE + p dV = T dS

Here E = ρ V = ρ a3 is energy and S is entropy.
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Isentropic expansion

Friedmann expansion driven by an ideal fluid is isentropic,

dS = 0. Dissipation is negligible usually.

Entropy:

S =
2π2

45
g∗ T 3 a3 = const ,

g∗ =
∑

i=bosons

gi +
7

8

∑
j=fermions

gj .

Useful relation

a ∝
1

T
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Relativistic degrees of freedom

Particles with m � T should be counted only, i. e. g∗ is a

function of temperature
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Georgy Antonovich Gamov

Nuclear physicist and cosmologist

Explained nuclear alpha decay by quantum mechanical

tunneling (1928).

His model of atomic nuclei (1929) served as the basis for the

modern theories of nuclear fission and fusion.

He developed, with Edward Teller, a theory of nuclear beta

decay (1936).
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Georgy Antonovich Gamov

Nuclear physicist and cosmologist

Later he used his knowledge of nuclear reactions to interpret

stellar evolution and element formation

in stars (1938).

Modeled red giants, supernovae, and neutron stars (1939).
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Georgy Antonovich Gamov

Nuclear physicist and cosmologist

In 1954 he proposed the concept of a genetic code and first

suggested how the genetic code might be transcribed...
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Georgy Antonovich Gamov

Nuclear physicist and cosmologist

In 1946 G. Gamov realized that 4He could not have been

produced in stars. He suggested, as a way out, that the

early Universe itself was the Oven in which light elements

were cooked up.

He also calculated the left-over heat which should be

measured today as 5◦ K CMBR.

The Hot Big Bang theory was born.
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Cosmic Microwave Background Radiation

Predicted by G. Gamov in 1946: 5 K◦

Measured by A. Penzias and R. Wilson in 1965: 3.5 K◦

2.725 K◦ above absolute zero

mm-cm wavelength

410 photons per cubic centimeter

10 trillion photons per second per squared centimeter
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Cosmic Microwave Background Radiation

Predicted by G. Gamov in 1946: 5 K◦

Measured by A. Penzias and R. Wilson in 1965: 3.5 K◦

2.725 K◦ above absolute zero

mm-cm wavelength

410 photons per cubic centimeter

10 trillion photons per second per squared centimeter

Few percent of TV “snow”
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Perfect Blackbody

The CMBR spectrum is strictly blackbody, T = 2.725 K

Bose-Einstein distribution

n =
1

exp(E/T ) − 1

COBE (1994)

There is no explanation to it but the hot Big Bang
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Last scattering of light

Matter is ionized at temperatures

higher than hydrogen ionization

energy Eion = 13.6 eV. At lower

T neutral atoms start to form.

ne np

nH
=

(
meT

2π

)3/2

e−Eion/T

Univerese became transparent for radiation when

σγe ne ∼ t

Here σγe = 8πα2/3m2
e is the Compton cross-section.

Numerically Tls = 0.26 eV
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Last scattering of light

CMBR is a snapshot of the

baby Universe at the time

of last scattering.

We cannot see past this

surface.
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Temperature map of the sky

Temperature slightly different in different patches of the sky

- 1 part in 100,000.
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CMB power spectrum

The temperature anisotropy, T (n), is expanded in a spherical harmonics

T (n) =
∑
l,m

almYlm(n).

The angular power spectrum, Cl, is defined as

Csky
l =

1

2l + 1

∑
m

|alm|2.

Assuming random phases, the temperature anisotropy for each

multipole moment, ∆Tl, can be associated with the angular spectrum

∆Tl =

√
Csky

l l(l + 1)/2π.

The correlation function is

C(θ) =
1

4π

∑
l

(2l+1)Cl Pl(cos θ)

where Pl is the Legendre polynomial or order l.
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CMB power spectrum: tool of Precision Cosmology
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Tool of Precision Cosmology

Soundscape of the sky
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Tool of Precision Cosmology

Soundscape of the sky
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Tool of Precision Cosmology

Instant photo of sound waves
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Cosmological parameters
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Geometry of the Universe

⇐

The Universe is spatially flat and is dominated by the dark energy

with the equation of state w = −1
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Constraints on the neutrino mass

Neutrino temperature

Tν = 1.947 K

This gives nνi = 115 cm−3

Since ρν =
∑

i mνi nνi

we also have a constraint

Ων < 10−2 Ωm
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Constraints on the matter abundance
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Matter content in the Universe

96% of the Universe is made of unknown substance
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DARK MATTER: motivation

Missing mass is seen on all cosmological scales and reveals itself

via

Flat rotational curves in galaxies

Gravitational potential which confines galaxies and hot gas in

clusters

Gravitational lenses in clusters

Gravitational potential which allows structure formation from

tiny primeval perturbations

Gravitational potential which creates CMBR anisotropies

. . .
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Dark matter in galaxies

Stellar Disk

Dark Halo

Observed

Gas

M33 rotation curve

Newtonian Dynamics:

v2
rot

r
=

G M(r)

r2
→ vrot =

√
G M(r)

r
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Dark matter in clusters of galaxies

Halo structure

Simplest self-gravitating stationary solution which gives flat

rotational curves - isothermal sphere

ρ(r) =
ρ0

(1 + x2)
, where x ≡ r/rc

Empirical fit to numerical simulations,

Navarro, Frenk & White (NFW) profile

ρ(r) =
ρ0

x (1 + x)2

. . .
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Dark matter in clusters of galaxies

Abell 2029

X-ray and optical data produce similar density profiles dominated

by single DM component, consistent with NFW profile
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Dark matter in clusters of galaxies

Mass estimate. I.

Virial theorem 2〈Ekin〉 + 〈Epot〉 = 0

where 〈Ekin〉 = 1
2Nm〈v2〉, 〈Epot〉 = −1

2
G N2m2

〈r〉

gives for the total mass estimate, M ≡ Nm

M ∼
2〈r〉〈v2〉

G

E.g. for Coma cluster Zwicky (1933)
M

L
∼ 300 h

M�

L�

Mass of visible galaxies 1% - 7%

Hot gas contributes 10% - 40%

The rest should be dark matter.
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Dark matter in clusters of galaxies

Mass estimate. II. Assume hot gas is in thermal equilibrium in

gravitational well created by cluster. Measuring temperature profile one

can reconstruct gas pressure and density and hence the gravitational

potential.

Detailed modeling of Abell 2029 gives

triangles: gas contribution

dot-dashed curves: stellar mass with

M/L of 1 and 12

solid line: NFW dark matter profile

ρ ∝ 1
x(1+x2)

,

where x ≡ r/rs and rs = 540 kpc

Baryonic fraction 14%. This also gives Ωm ≈ 029.

Lewis et al (2003)
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Dark matter in clusters of galaxies

Abell 2218

Acts in this example as a gravitational lens
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Structure formation and Dark Matter

By today the structure is formed already, δρ/ρ ∼ 1.

Initial perturbations were small, δρ/ρ ∼ 10−5.

Perturbations do not grow in the radiation dominated epoch,

during matter domination δρ/ρ ∼ a. Morover, perturbations in

baryons can grow only after recombination. But

atoday

adec
= 1 + zdec = 1090

Therefore, in a baryonic universe structure can grow only by a

factor

103

One needs non-baryonic dark matter to facilitate structure growth
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CMBR and Dark matter

Best fit values (CMB data only): h = 0.73 ± 0.05

Ωmh2 = 0.13 ± 0.01, ΩBh2 = 0.023 ± 0.001

Or

ΩCDM = 0.2±0.02
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Non-baryonic Dark Matter candidates

name mass

Graviton 10−21 eV

Axion 10−5 eV

Sterile Neutrino 10 keV

Mirror matter 1 GeV

WIMP 100 GeV

WIMPZILLA 1013 GeV
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Dark matter and Dark energy: what’s the difference?

DARK MATTER:

From the fluid dynamics

point of view it behaves like

a dust

After identification of dark

matter a new member in the

the “zoo” of elementary

particles will appear,

and we will learn about the

underlying particle physics

theory, its symmetries and

will single out the relevant

model.
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Dark matter and Dark energy: what’s the difference?

DARK ENERGY:

Dark energy is the energy

of the vacuum. It remains

constant with expansion.

We do not understand it on

the fundamental level yet.

(Why it is non-vanishing

and at present is relevant

cosmologically?)

Understanding of it has

great promise.
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Evidence for Dark energy

Age of the Universe

During mater dominated expansion a ∝ t2/3. Therefore

H0 t0 = 2/3

Pre-WMAP measurments:

H0 = 70 ± 7 km sec−1 Mpc−1, t0 = 13 ± 1.5 Gyr

and H0 t0 = 0.93 ± 0.15

For two components, usual

matter and dark energy:

Ω M
= 0.25

Ω M
= 0.35

H t0 0

−0.5 0−1

.7

.8

.9

1.

1.1

.6

W
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Evidence for Dark energy

Supernovae: direct probe of the expansion history
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Expansion history
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Detailed Matter content

Cooked in

stars

Cooked in

Big Bang
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Thermal History
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Symmetry

Laws of physics do not

depend upon observer or

choice of coordinates

Different interactions (or

particles) can be unified in

one entity

True ultimate theory is

maximally symmetric

The symmetries are broken

in our world

(aka our vacuum)

Symmetry: the guiding principle of physics
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Unification of forces
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Thermal History
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Thermal History

Universe is hot and expands: it was even hotter in the past.
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Big Bang Nucleosynthesis: Helium abundace

4He is the second most abundant element, constitutes about 25%.

Chemical equilibrium between protons and neutrons is maintained by

weak interactions

n + ν � p + e−, n + e+ � p + ν,

which get out of thermal equilibrium at Tf ∼ 1 MeV
On the other hand

∆m ≡ mn − mp = 1.29 MeV

Therefore, at freeze-out

n

p
∼ e−∆m/Tf ≈ 0.27

It is important also that neutron lifetime (980 s) is much longer than the

age of the Universe at this time (1 s). 4He is the most bound among

the light elements, Ebind ≈ 28 MeV. Therefore, almost all neutrons

produced in the early universe should end up in 4He.
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Big Bang Nucleosynthesis

p,n D
p,n

DD2

 DD1

     

T

He

He

Be

Li

3

7

4

7

He  HeHe D   

 T D

Li  p  

3

3

D p

He n  Be n       

He T

3  

  4

7  

4 

7

D γ

Involves numerical solution of coupled kinetic equations

dni

dt
= I(n1, n2, . . . )

for the concentrations of elements in the expanding Universe
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BBN light element abundances

Baryon asymmetry η10
is determined from CMB

with a precision of 4%
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Baryon asymmetry

In a comoving volume, at late times, entropy and the number of

baryons are conserved. This gives important cosmological

parameter, baryon asymmetry:

η =
nB

nγ

Observationally η = (6.1 ± 0.25) × 10−10

This quantity should and can be understood dynamically within

frameworks of the Big Bang.

Baryon asymmetry can be generated if

Baryon number is not conserved

C- and CP- are violated

There are deviations from thermal equilibrium

Sakharov (1967), Kuzmin 1970)
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Baryogenesis

Mechanisms

Grand Unified Baryogenesis

Leptogenesis

. . .

+X
q

X

X
q

q

l

q

l

q

q

Grand Unified Baryogenesis.

Out of equilibrium decays of

heavy leptoquarks.

If C- and CP- are violated

Γ(X → q, l) 6= Γ(X̄ → q̄, l̄)
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Sphalerons

It converts three baryons to

three antileptons.

At T � MW this process

washes out any B + L
Kuzmin, Rubakov, Shaposhnikov (1985)

Leptogenesis.

Lepton asymmetry can be

generated in decays or

oscillations of νR

Lepton asymmetry ⇒ Sphalerons ⇒ Baryon asymmetry
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Basics of inflation

Puzzles of classical cosmology

WHY THE UNIVERSE

is so old, big and flat ?

t > 1010 years

homogeneous and isotropic?

δT/T ∼ 10−5

contains so much entropy?

S > 1090

does not contain unwanted relics?

(e.g. magnetic monopoles)

can be solved with hypothesis of Inflation
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Basics of inflation

Definition

“Inflation” is a period of accelerated universe expansion

ä > 0

Friedmann equations

ä = −
4π

3
Ga(ρ + 3p)

We have inflation whenever p < −ρ/3



P
o
S
(
N
I
C
-
I
X
)
2
5
5

Getting something for nothing

T ν
µ =


ρ 0 0 0
0 −p 0 0
0 0 −p 0
0 0 0 −p


Energy-momentum conservation T µν

;ν = 0 can be written as

dρ

dt
+ 3H(ρ + p) = 0

Consider Tµν for a vacuum. Vacuum has to be Lorentz invariant,

hence T ν
µ = V δ ν

µ and we find p = −ρ ⇒ ρ̇ = 0

Energy of the vacuum stays constant despite the expansion !
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The Inflaton field

Consider Tµν for a scalar field ϕ

Tµν = ∂µϕ ∂νϕ − gµν L

with the Lagrangian :

L = ∂µϕ ∂µϕ − V (ϕ)

In a state when all derivatives of ϕ are zero, the stress-energy

tensor of a scalar field is that of a vacuum, p ≈ −ρ

Tµν = V (ϕ) gµν



P
o
S
(
N
I
C
-
I
X
)
2
5
5

There are two basic ways to arrange ϕ ≈ const and hence to

imitate the vacuum-like state.

1. A. Guth: consider potential

with two minima

2. A. Linde: consider the

simplest potential

V (ϕ) =
1

2
m2ϕ2
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Chaotic Inflation

Equation of motion

ϕ̈ + 3Hϕ̇ + m2ϕ = 0

If H � m the field rolls down slowly (“slow-roll”)

H ∼ m ϕ/MPl

ϕ > MPl Inflation

ϕ < MPl Reheating



P
o
S
(
N
I
C
-
I
X
)
2
5
5

During Inflation the Universe is empty, in a vacuum state.

Particle physicist Cosmologist

Where all matter and seeds for structure formation came from ?
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Predictive power of Inflation

Fluctuations in inflaton field

⇓
CMBR anisotropy

379,000 years after

⇓
Large-scale structure

13.7 billions years after
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Initial linear stage

Unified Theory of Creation

During Inflation the Universe is “empty”. But small fluctuations

obey

ük + [k2 + m2
eff(τ )] uk = 0

and it is not possible to keep fluctuations in vacuum

if meff is time dependent
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Initial linear stage

Unified Theory of Creation

During Inflation the Universe is “empty”. But small fluctuations

obey

ük + [k2 + m2
eff(τ )] uk = 0

and it is not possible to keep fluctuations in vacuum

if meff is time dependent

The source for meff = meff(τ ) is time-dependence of classical

backgrounds:

Expansion of space-time, a(τ )

Evolution of the inflaton field, φ(τ )
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ük + [k2 + m2
eff(τ )] uk = 0

Technical remarks:

This equation holds for all metric perturbations

and for all particle species

Equations look that simple in conformal reference

frame ds2 = a(η)2 (dη2 − dx2)

For conformally coupled, but massive

scalar meff = m0 a(η)

meff may be non-zero even for massless fields,

graviton is the simplest example m2
eff = −ä/a

Of particular interest are ripples of space-time itself

curvature fluctuations (scalar)

gravitons (tensor)



P
o
S
(
N
I
C
-
I
X
)
2
5
5

ük + [k2 + m2
eff(τ )] uk = 0

Technical remarks:

This equation holds for all metric perturbations

and for all particle species

Equations look that simple in conformal reference

frame ds2 = a(η)2 (dη2 − dx2)

For conformally coupled, but massive

scalar meff = m0 a(η)

meff may be non-zero even for massless fields,

graviton is the simplest example m2
eff = −ä/a
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ük + [k2 + m2
eff(τ )] uk = 0

Technical remarks:

This equation holds for all metric perturbations

and for all particle species

Equations look that simple in conformal reference

frame ds2 = a(η)2 (dη2 − dx2)

For conformally coupled, but massive

scalar meff = m0 a(η)

meff may be non-zero even for massless fields,

graviton is the simplest example m2
eff = −ä/a

Of particular interest are ripples of space-time itself

curvature fluctuations (scalar)

gravitons (tensor)
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Power spectrum

Decompose a scalar field over creation and annihilation operators

φ(x, t) =
1

a

∫
d3k

(2π)3/2

[
uk(t) ak eikx + u∗

k(t) a†
k e−ikx

]
Regularized variance

〈0|ϕ2(x)|0〉reg =
1

a2

∫
d3k

(2π)3

(
|uk|2 −

1

2ωk

)
≡

∫
Pϕ(k)

dk

k

Therefore, the power spectrum of field fluctuations is

Pϕ(k) =
k3

2π2a2

(
|uk|2 −

1

2ωk

)
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Inflationary perturbations

Assume Hubble parameter during inflation is constant, a(η) = −
1

Hη
Mode functions of massles field (ξ = 0) obey

ük +

[
k2 −

2

η2

]
uk = 0

Solution with proper initial conditions at η → −∞

uk =
e−ikη

√
2k

(
1 −

i

kη

)
After horizon crossing (kη � 1 ): uk → −

1
√

2

i

k3/2 η

and

Pϕ(k) →
H2

(2π)2
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Curvature perturbations

Spatial Curvature (3)R ∝
1

a2

Its perturbation ζ :

ζ =
δa

a
= Hδt = H

δϕ

ϕ̇

Therefore

Pζ (k) =
H2

ϕ̇2
Pϕ(k)

and we find

Pζ (k) =
1

4π2

H4

ϕ̇2



P
o
S
(
N
I
C
-
I
X
)
2
5
5

Slow-roll

Cosmological scales

encompass small ∆φ
interval

Potentail should be flat over

this range of ∆φ

Therefore, observables essentially depend on a first few

derivatives of H (or V) defined at some scale φ0.

Slow-roll parameters:

H(φ0)

ε ≡
M2

Pl

4π

(
H ′

H

)2

η ≡
M2

Pl

4π

H ′′

H
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Slow-roll

In the slow-roll approximation ϕ̈ can be neglected and equation

of moton

ϕ̈ + 3Hϕ̇ = −V ′

gives

ϕ̇ = −
V ′

3H

Since ρ ≈ V we also can use

H2 =
8πG

3
V

This gives for curvature perturbations

Pζ(k) =
H4

4π2 ϕ̇2
=

1

πε

H2

M2
Pl
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Normalizing to CMBR

Let us consider the simple model V = 1
2m2ϕ2. We have

H =

√
4π

3

mϕ

MPl
, ε =

M2
Pl

4πϕ2

and

ζk ≡ Pζ(k)1/2 =

√
16π

3

m ϕ2

M3
Pl

Since δT/T = 2ζk/3 we find

m ≈
δT

T

MPl

30
≈ 1013 GeV
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Power spectra and consistency relation

Power spectra of Scalar (curvature) and Tensor (gravity waves)

perturbations

P (k)S =
1

πε

H2

M2
Pl

P (k)T =
16

π

H2

M2
Pl

⇒
P (k)T

P (k)S
= 16ε

Spectra can be approximated as power law functions

P (k)S = P (k0)S

(
k

k0

)n−1

P (k)T = P (k0)T

(
k

k0

)nT

In slow roll parameters one finds n − 1 = 2η − 4ε, nT = −2ε
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3 year WMAP data

Reconstruction of inflaton potential, V (φ) ∝ φn

m ∼ 1013 GeV
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Basics of inflation

Puzzles of classical cosmology

WHY THE UNIVERSE

is so old, big and flat ?

t > 1010 years

homogeneous and isotropic?

δT/T ∼ 10−5

contains so much entropy?

S > 1090

does not contain unwanted relics?

(e.g. magnetic monopoles)

can be solved with hypothesis of Inflation

Curvature problem and the solution

Friedmann equation (
ȧ

a

)2

=
8πG

3
ρ −

k

a2

can be re-written as

k = ȧ2 (Ω − 1) = const

Problem: During matter or radiation dominated stages ȧ2 decreses

(since ä < 0), therefore Ω is driven away from unity. To get

Ω ∼ 1 today, one needs enormous initial fine-tuning, say at BBN

epoch |Ω(tNS) − 1| < 10−15

Solution: Accelerated expansion drives Ω to unity. Therefore, the

problem can be solved if at early times ä > 0
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Basics of inflation

Puzzles of classical cosmology

WHY THE UNIVERSE

is so old, big and flat ?

t > 1010 years

homogeneous and isotropic?

δT/T ∼ 10−5

contains so much entropy?

S > 1090

does not contain unwanted relics?

(e.g. magnetic monopoles)

can be solved with hypothesis of Inflation

Horizon problem and the solution

Horison: ∝ t

Physical size: ∝ a(t) ∝ tγ

During matter or radiation

dominated stages γ < 1,

therefore the visible

universe at early times

contains many causially

disconnected regions.

Problem is solved if there

was a period with γ > 1
or ä > 0
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Basics of inflation

Puzzles of classical cosmology

WHY THE UNIVERSE

is so old, big and flat ?

t > 1010 years

homogeneous and isotropic?

δT/T ∼ 10−5

contains so much entropy?

S > 1090

does not contain unwanted relics?

(e.g. magnetic monopoles)

can be solved with hypothesis of Inflation
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