Stellar evolution and nucleosynthesis

- Low- and intermediate mass stars -

Corinne Charbonnel CNRS & Geneva Observatory

Stellar evolution and nucleosynthesis

- Low and intermediate-mass stars -

Evolution and nucleosynthesis in stars : A global overview of the hydrostatic phases

Diagrams : HRD, log Tc vs log ρ c, main evolution and nucleosynthetic phases, mass limits for the various nucleosynthetic paths

- Main sequence nucleosynthesis - Clues from ³He

- Nucleosynthesis in AGB stars

AGB structure, TP, mass loss, HBB, 3d dredge-up, rotation, processus-s, yields Constraints from PNe and post-AGBs

Initial stellar mass determines the life stages

- Initial stellar mass determines stages stars go through and how long they last in each stage
 - with just little bit of dependence on composition
- Massive stars evolve faster than small stars
 - Relationship between the luminosity and mass determined by how compressed gases behave
 - Small increase in mass produces a large increase in the luminosity of a star

Lifetime vs initial mass

Higher initial mass \Rightarrow hotter on the main sequence and more short lived

Main sequence lifetime (at solar metallicity) :

star mass (solar masses)	time (years)	Spectral type
60	3 million	O3
30	11 million	07
10	32 million	B4
3	370 million	A5
1.5	3 billion	F5
1	10 billion	G2 (Sun)
0.1	1000's billions	M7

Nucleosynthesis on the main sequence

nrumiano rbonnel. NIC IX summer school. CERN. June 21, 2006

From the main sequence to the red giant branch

- Main sequence: inward gravity balanced by the outward pressure
- Pressure due to fusion in core
- Hydrogen in the core eventually converted to helium ⇒ nuclear reactions stop!
- Gravity takes over and the core shrinks
- Outside layers also collapse
- Layers closer to the center collapse faster than those near the surface.
- As the layers collapses, the gas compresses and heats up

From the main sequence to the red giant branch

- Shell layer outside the core becomes hot and dense enough for fusion to start → *H-burning shell*
- shell fusion is very rapid because the shell layer is still compressing and increasing in temperature
- luminosity of the star increases from its main sequence value
- Gas surrounding the core puffs outward under the action of the extra outward pressure
- The star expands and becomes a *subgiant* and then a *red giant*

Figures from Lattanzio

From the main sequence to the red giant branch

<u>Time to reach the</u> <u>red giant stage</u>

short for big stars \rightarrow as low as 10 million (10⁷) years

long for little stars \rightarrow up to 10 billion (10¹⁰) years for low mass

1st dredge-up

Changes of surface abundances during the 1st dredge-up

Consequences for the evolution of ³He in the Galaxy ?

A nuclear solution?

Low energy resonance in the cross section of ³He(³He,2p)⁴He ?

Excluded by the LUNA experiment (Gran Sasso) Junker et al. (98)

« The galactic ³He problem »

Consequences for the evolution of ³He in the Galaxy ?

A nuclear solution? Excluded by the ³He measurement in PNe

Standard predictions

Palla et al. (02) See also Tosi (98)

> 90% of the low-mass stars must destroy ³He

$^{12}C/^{13}C$ in PNe

Palla et al. (00) Palla et al. (02) Ejecta at the tip of the AGB (ZM) : Van den Hoek & Groenewegen (97) ····· Forestini & Charbonnel (97) – – – Marigo (98)

Lifetimes of various chemical elements in the radiative zone around the hydrogen burning shell

Palacios, Charbonnel & Forestini (01)

The Lithium flash

C. Charbonnel. NIC IX summer school. CERN. June 21, 2006

The Lithium flash

ε_{nuc} スス ⇒ Ur ∝ εnuc ス ⇒D_{mix} ス ⇒⁷Li ス in the convective envelope ⇒<u>Super lithium-rich</u> <u>red giant phase</u> at the very beginning of the extra-mixing episode

From rotation-induced mixing to the Lithium flash

1) Rotation \Rightarrow D_{mix} ~ 10⁵ to 10⁸ cm²/s

2) ⁷Be is transported outward, but decays in a region where ⁷Li burns

3) ε_{nuc} $\forall \forall ia \ ^7Li(p,\alpha)^4He \Rightarrow \underline{FLASH} = \forall \forall L \Leftrightarrow, dM/dt (IRAS fluxes)$ (Bright Li rich stars in GCs and formation of a dust shell)

4) $\varepsilon_{nuc} \nearrow ? \Rightarrow Ur \propto \varepsilon_{nuc} ? \Rightarrow D_{mix} ? + D_{conv} ? \Rightarrow ^7Li ? in the convective envelope$ $<math>\Rightarrow Super lithium-rich red giant$ with ~ standard $^{12}C/^{13}C$ (~ 50 - 60 % of τ (bump) ~ few 10⁶ years)

5) ⇒ Decrease of ⁷Li, ¹²C et ¹²C/¹³C
Deepening of the convective envelope
⇒ Build up of a new μ-gradient that inhibits further mixing
C. Charbonnel. NIC IX summer school. CERN. June 21, 2006

Lithium rich RGB stars

Field stars with $\Pi(Hipparcos)$

Charbonnel & Balachandran (00)

Central Helium burning

From the red giant branch

- Red giant branch : degenerate helium core surrounded by hydrogen burning shell
- Mass of the He-core increases
- Helium fusion starts at 100 million K
- Triple alpha process: three ${}^{4}\text{He} \rightarrow {}^{12}\text{C}$

to the horizontal branch

- Helium flash : onset of helium fusion produces a burst of energy
- Reaction rate settles down
- Fusion in the core releases more energy/second than core fusion in main sequence
 - star is smaller and hotter, but stable!
 - hydrostatic equilibrium holds until the core fuel runs out.

stage 6: helium flash \rightarrow yellow giant

Central Helium-Burning

End of Central Helium-Burning

Meynet (1990) : Central abundances of ¹²C and ¹⁶O in mass fraction

Initial stellar mass (M_{\odot})	12 C	16 O
120	0.01245	0.81178
60	0.04321	0.89021
20	0.11675	0.85075
9	0.13063	0.84164
4	0.089322	0.88376
3	0.05249	0.92081
2	0.09247	0.88122

stage 6: yellow giant \rightarrow red giant or supergiant

