Cataclysmic variables

Jeff Blackmon, Physics Division, Oak Ridge National Lab

80,000 miles

I. Astrophysics

∧ Novae

- Discovery
- Mechanism
- Models
- New observations

- Observations
- Models
- Superbursts

II. Nuclear reaction rates

- ∧ Theory
- ∧ Radioactive ion beams
- $rac{(p,\gamma)}{reactions}$
- (p,α) reactions
- κ (α ,p) reactions

III. Nuclear structure

- ∧ Nucleon knock-out reactions
- 尽 Direct capture

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

NIC IX Summer School

NASA-HEASAR(

Discovering Novae

- ∧ The most common stellar explosion
 - About 3 dozen per year in Milky Way
- Characterized by increase in brightness of 8-15 magnitudes (10³-10⁶ times)
 - Peak reached in < 24 h
 - Much slower decay (weeks)
 - Recur after t >1000 yr ?
 - Discovered by amateurs
 - 100's observers networking around the world
 - Usually discovered photographically

K Nova Ophiuchi 2006 No. 2

- Discovered April 6, 2006
- Peter Williams, Sydney Australia
- Visual discovery (Magnitude 10)
- Peak brightness 9.2
- Confirmation:
 - William Liller (Chile)
 - Tom Krajci (US)
 - Jaciej Reszelski (Poland)

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Giants and dwarves

Harrington & Borkov/ski- STSci

Novae mechanism

- Hydrogen-rich gas from main sequence or giant star accretes onto white dwarf and burns via hot-CNO cycle
- Pressure support by electron degeneracy

- ∧ Thermonuclear runaway
- ▷ Driven by nuclear physics
- Rates of nuclear reactions are important for understanding energy generation and nucleosynthesis
- **▷** Source for ¹³C, ¹⁵N, ¹⁷O, ...

► Difficult problem t_{nuclear} ~ t_{hydro}

Thermonuclear events

Simple example: 1D - CN cycle

Reaction network

$$\frac{dN_{12C}}{dt} = N_{15N}N_p \langle \sigma v \rangle_{15Np} - N_{12C}N_p \langle \sigma v \rangle_{12Cp}$$

$$\frac{dN_{13N}}{dt} = N_{12C}N_p \langle \sigma v \rangle_{12Cp} - N_{13N}N_p \langle \sigma v \rangle_{13Np} - \lambda_{13N}N_{13N}$$

$$\frac{dN_{13C}}{dt} = \lambda_{13N} N_{13N} - N_{13C} N_p \langle \sigma v \rangle_{13Cp}$$

$$\frac{dN_{140}}{dt} = N_{13N}N_p \langle \sigma v \rangle_{13Np} - \lambda_{140}N_{140}$$

$$\frac{dN_{14N}}{dt} = N_{13C}N_p \langle \sigma v \rangle_{13Cp} + \lambda_{14O}N_{14O} - N_{14N}N_p \langle \sigma v \rangle_{14Np}$$

$$\frac{dN_{150}}{dt} = N_{14N}N_p \langle \sigma v \rangle_{14Np} - \lambda_{150}N_{150}$$

$$\frac{dN_{15N}}{dt} = \lambda_{150} N_{150} - N_{15N} N_p \langle \sigma v \rangle_{15Np}$$

Complex, multidimensional problem

Complex hydrodynamical models required

- Mulitdimensional models using adaptive coordinate mesh
- Nuclear physics typically decoupled or simplified
- Nucleosynthesis tracked in detail in a post-processing approach
- Frontier is now coupling of better nuclear physics with more realistic hydrodynamical models

RS Ophiuchi

- Swift observations began less than 3 days after onset (observations only after 3 weeks in 1985)
- Observed by 4 space observatories and variety of ground based instruments on the same day (Feb. 26)
- - Williamina Stevens Flemming (1857-1911)

Harvard University Archives

New observational techniques

べ Observations of RS Oph

- White dwarf mass near maximum
- Red giant experiencing extremely high mass loss
- Laboratory for studying interactions ejecta with nebula
- Rise in X-ray emissions observed as white dwarf is "unveiled"
- Oscillations in X-ray emission not understood
- · Gamma ray line observations not yet correlated with novae

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

NIC IX Summer School

UT-BATTELL

Hubble Space Telescope

Nova Cygni 1992 Hubble Space Telescope Faint Object Camera

Erupted Feb. 19, 1992 10,400 light years away

- Now more than a dozen observations of the expansion of nova shell ejecta over time
 - C.D. Gill and T.J. O'Brien, MNRAS **314** (2000) 175.

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

X-ray vision

- ∧ Over 100 sources in the Milky Way
 - Do not confuse with Gamma ray-bursts
- Thermonuclear explosion on surface of a neutron star
- Observations provide crucial insights into neutron star properties
 - Spin limited by gravitational radiation

Classic example: Ginga 1826

RXTE Observations: D. K. Galloway et al., ApJ 601 (2004) 466.

Regular burstsSimilar light curves

- Probably ignited by carbon burning
- ▷ Photodisintegration may provide major energy source
 - Schatz, Bildsten and Cumming, ApJ 583 (2003) L87.
- Composition of rp process ashes is important

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Nuclear reaction rates

The rates of nuclear reactions are important for understanding novae and X-ray bursts.

$$\left\langle \sigma v \right\rangle = \sqrt{\frac{8}{\pi \mu}} (kT)^{3/2} \int_{0}^{\infty} \sigma E e^{-E/(kT)} dE$$
$$\left\langle \sigma v \right\rangle = \sqrt{\frac{8}{\pi \mu}} (kT)^{3/2} \int_{0}^{\infty} S e^{-b/\sqrt{E}} e^{-E/(kT)} dE$$

- Narrow range of relatively low energies are important in novae
- Energy range increases substantially with temperature and with atomic number
- Resonances in or near the Gamow window are crucial

Reactions on stable isotopes

Good direct measurements with high intensity proton/alpha beams in the energy regime for explosion nucleosynthesis

¹⁷ $O(p, \alpha)$ ¹⁴N at CSNSM-Orsay

Reactions with radioactive ions

- Many reactions involving radioactive isotopes play an important role in novae and X-ray binaries, but reaction rates generally have substantial uncertainties owing to a lack of experimental data.
- Radioactive Ion Beams (RIBs) are now allowing measurements that are significantly improving nuclear reaction rates.
- Very different experimental techniques are required for measurements with RIBs.

Radioactive Ion Beam (RIB) production

Projectile Fragmentation @ the NSCL

²¹Na(p,γ)²²Na with DRAGON

HRIBF results so far

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

NIC IX Summer School

1.0

≣

665-keV

data

0.8

destructive

800

Novel approach to (p, α) reactions

That's great, but ...

- Radioactive ion beam intensities are typically very low.
 - Expensive to produce
 - Beam time limited
- Cross sections for reactions of interest are low:
 - (p,γ) σ < μb
 - (p,α) σ < mb
- Wide range of energies important in explosive environments.
- Measurement of complete excitation function over energy range of interest is usually not practical.
- Need alternative approaches to measure nuclear structure properties:
 - Stable beam measurements
 - Elastic scattering with RIBs
 - Direct reactions with RIBs

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Transfer Reactions → Resonant properties

∧ A nucleon or "cluster" of nucleons (no internal degrees of freedom)
 is transferred from one nucleus to another.

 $\mathbb{R}E_x$, *l*-transfer, sometimes widths.

$$\left(\frac{d\sigma}{d\Omega}\right)_{\rm exp} = C^2 S \left(\frac{d\sigma}{d\Omega}\right)_{\rm DWBA}$$

$$T_{DWBA} = \left\langle \varphi_{Ax} \chi_{bB}^{-} | V_{xb} | \chi_{aA}^{+} \varphi_{bx} \right\rangle$$

$$C^2 S = \frac{\Gamma_p}{\Gamma_{sp}}$$

Stable measurements \rightarrow RIB reaction rates

U. S. DEPARTMENT OF ENERGY

Rate slow under nova conditions, but still uncertain for X-ray burst ignition

Gamma widths via Doppler-shift (DSAM) W. Tan et al., PRC, in press. rightarrow Energy of γ from decay of recoiling heavy **HPGe** nucleus is shifted due to its relative motion. 28.5° ightarrow Nucleus slows down in target \rightarrow range of shifts depending on lifetime. ³He 3 MeV 17O/Ta 100 Data 13 fs 900 4 fs 29 fs n det Counts ----- 50 fs 50

- ⊾ Line shape analysis.
- New lifetime for 4034 keV state in ¹⁹Ne.

 $T = 13^{+9}_{-6} \text{ fs} \rightarrow \Gamma = 51^{+43}_{-21} \text{ meV}$

http://www.nd.edu/%7Ensl/

4060

n

4050

4090

4080

4070

 \mathbf{E}_{v} (keV)

Mass measurements

J. A. Clark et al., PRL 92 (2004) 192501.

http://www.phy.anl.gov/atlas

Fusion evaporation reactions provide access to even the most heavy rp process nuclei.

(α,α) at CRC at Louvain-le-Neuve

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

(³He,d) in inverse kinematics with RIBs

- \square Difficult \rightarrow no measurements yet
- [™] ³He target
- ⊾ab energy of d is low
- $rac{}$ Need angles θ_{lab}~90°
- 尽 Need good resolution
 - Energy
 - Angle
- Gas jet target
- ⊾ Look at alternatives

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

(d,p) to improve mirror assignments

¹⁸F(d,p)¹⁹F - Neutron single-particle strengths of mirror levels for ¹⁸F(p,α)¹⁵O. *R.L. Kozub et al., PRC* **71** (2005) 032801; and *R.L. Kozub et al. PRC, in press.*

0.1

1

T₉

Direct capture

- Direct capture cross section is uncertain - based entirely on structure of mirror states in ¹⁸O.
- Capture is expected to proceed primarily through a cascade via 2⁺ and 4⁺ excited states.
- Alternative techniques can be used to accurately determine the direct capture cross section.

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

- Can be important in cases where the level density is very low → near drip line.
- ¹⁷F(p, γ)¹⁸Ne is a good example.
- Strength of 3⁺ can be measured directly:
 - 10 events/day at 10⁷ pps incident
- But direct capture is expected to dominate the rate at nova temperatures:
 - $\rightarrow 10^{10}$ pps incident needed

Direct capture from ANC's

- Direct capture occurs via an electromagnetic transition at large radii.
- The cross section can be accurately calculated from the Asymptotic Normalization Coefficients (ANC's) with little model dependence.
- The ANC's can be determined by measuring the cross section for peripheral proton transfer reactions.
 - Mukhamedzhanov et al., PRC 56 (1997) 1302.
 - Gagliardi et al., PRC 59 (1999) 1149.
 - Gagliardi et al., Eur. Phys. J. A13 (2002) 227.

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

 $\sigma_{DWBA} \sim |\langle \chi_{\beta} \psi_{\beta} | \vartheta | \chi_{\alpha} \psi_{\alpha} \rangle|^{2}$ $\psi \sim (\frac{C}{b}) \varphi \quad \text{and} \quad \varphi \xrightarrow[r \gg R_{A}]{} b \frac{W}{r}$ $\frac{d\sigma}{d\Omega} = \frac{C_{Z+p}}{b_{Z+n}} \frac{C_{I7F+p}}{b_{I7F+n}} \sigma_{DWBA}$

Conclusion

- ∧ Novae and X-ray bursts are interesting events.
- New observational tools are yielding an abundance of data.
- While the basic mechanism has been validated, there are many puzzles to be solved.
- Understanding these thermonuclear events requires coupling good nuclear data with sophisticated models.
- Short times scales → reactions on some short-lived isotopes are important.
- Radioactive ion beams are now providing a tool for measuring important reaction rates on radioactive nuclei.
- A variety of new techniques are required for effective measurements with radioactive ion beams.
- Stable beam measurements provide important complementary data.
- This promises to be an exciting field of research in the coming years.

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

NIC IX Summer School

NASA-HEASAR(