The rapid neutron capture process

H. Schatz Michigan State University National Superconducting Cyclotron Laboratory Joint Institute for Nuclear Astrophysics

Open questions:

- where in nature does the r-process take place ?
- is there more than one r-process in nature ?
- what are the heaviest elements produced by the r-process ?
- what is the exact reaction sequence ? (does it include neutrino reactions, fission, ...)
- Can the r-process tell us something about the physics of extreme astrophysical environments ?

Solar abundance distribution of nuclei (summed by mass number)

2

JIIN

each process contribution is a mix of many events ! 3

6

NSC

Heavy elements in Metal Poor Halo Stars

recall: [X/Y]=log(X/Y)-log(X/Y)_{solar}

CS22892-052 red (K) giant located in halo distance: 4.7 kpc mass ~0.8 M_sol [Fe/H]= -3.0 [Dy/Fe]= +1.7

A single (or a few) r-process event(s)

(note: r-process and s-process Ba disentangled by 6 calculation using info from other s-only and r-only elements)

How does the r-process work?

- Need: mix of suitable heavy seed nuclei (A=56-90) and neutrons
 - sufficient large number density of neutrons (max at least ~1e24 cm⁻³)
 - sufficient large neutron/seed ratio (at least ~100)

Nucleosynthesis in the r-process

→ Need nuclear physics to disentangle nuclear and astro effects from observed abundances

Common r-process models

• Site independent models:

- n_n, T, t parametrization (neutron density, temperature, irradiation time)
- S, Y_e, t parametrization (Entropy, electron fraction, expansion timescale)

Core collapse supernovae

- Neutrino wind
- Jets
- Explosive helium burning
- Gamma-ray bursts
- Neutron star mergers
 - Hot models
 - Cold decompression

How does the r-process work ? Neutron capture !

r-process in supernovae – late neutrino driven outflows

H. Schatz

Most favored scenario for high entropy:

Neutrino heated wind evaporating from proto neutron star in core collapse

Results for Supernova r-process

Takahashi, Witti, & Janka A&A 286(1994)857

(for latest treatment of this scenario see Thompson, Burrows, Meyer ApJ 562 (2001) 887)

other problem: the α effect

Recall equilibrium of nucleons in neutrino wind:

$$\vec{v}_{e} + p \rightarrow n + e^{+}$$
 Maintains a slight neutron excess
$$\frac{n_{p}}{n_{p} + n_{n}} \approx 0.4$$

What happens when α -particles form, leaving a mix of α -particles and neutrons ?

r-process in neutron star mergers ?

Ejection of matter in NS-mergers

Rosswog et al. A&A 341 (1999) 499

17

r-process in NS-mergers

Summary theoretical scenarios

	NS-mergers	Supernovae
Frequency (per yr and Galaxy)	1e-5 - 1e-4	2.2e-2
Ejected r-process mass (solar masses)	4e-3 – 4e-2	1e-6 – 1e-5
Summary	less frequent but more ejection	more frequent and less ejection

Argast et al. A&A 416 (2004) 997

 \rightarrow Neutron Star Mergers ruled out as major contributor