Neutrino Oscillations

PoS(NIC-IX)267

Neutrino Oscillations

What does that have to do with oscillations?

Ы

5

Consider Schrödinger equation

$$i\hbar \frac{d}{dt}\psi = H\psi \quad \Rightarrow \quad i\hbar \frac{d}{dt} \left(\begin{array}{c} |\nu_e\rangle \\ |\nu_\mu\rangle \end{array} \right) = H \left(\begin{array}{c} |\nu_e\rangle \\ |\nu_\mu\rangle \\ |\nu_\mu\rangle \end{array} \right)$$

What is the Hamiltonian H?

$$H|\nu_1\rangle = (p^2 + m_1^2)^{1/2}|\nu_1\rangle$$
$$H|\nu_2\rangle = (p^2 + m_2^2)^{1/2}|\nu_2\rangle$$

H is diagonal in basis of mass eigenstates Write $|\nu_e\rangle = \cos \theta |\nu_1\rangle + \dots$ The rest is algebra. Wave equation

 $\begin{array}{lll} \theta & \mbox{mixing angle} & L & \mbox{path length} \\ \delta m^2 & \mbox{mass difference} & E & \mbox{neutrino energy} \end{array}$

Real world: 3×3 (or more) mixing \rightarrow MNS matrix

$$\begin{pmatrix} |\nu_e\rangle \\ |\nu_\mu\rangle \\ |\nu_\tau\rangle \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} |\nu_1\rangle \\ |\nu_2\rangle \\ |\nu_3\rangle \\ 1 \end{pmatrix}$$
3 mixing angles, CP violating phase

$$U_{e1} = \cos \theta_{12} \cos \theta_{13}$$
$$U_{e2} = \sin \theta_{12} \cos \theta_{13}$$
$$U_{e3} = \sin \theta_{13} e^{-i\delta}$$

Atmospheric Neutrinos

DS(NIC

Cosmic rays collide with O, N and produce π, K, \dots which decay to $u_e,
u_\mu$

SuperK finds a deficit of ν_{μ} , no enhancement of ν_{e} .

SuperK also finds azimuthal dependence of ν_{μ} suppression

Solar Neutrinos

Sun produces ν_e through nuclear burning: pp cycle

CNO cycle (small)

PoS(NIC-IX)267

SuperK can see the Sun in Neutrinos

 $\nu_e + e^- \rightarrow \nu_e + e^-$

ν_e flux predicted by standard solar model (Bahcall and Pinsonneault, pp chain only)

Experiments measure Deficit of ν_e

(Homestake, Gallex, Sage, Kamiokande, SuperK, SNO)

SNO can measure both the total $\nu_e + \nu_\mu + \nu_\tau$ flux and the ν_e flux

$$\nu_{e} + D_{\Omega}^{H} \rightarrow p + p + e^{-1}$$

$$\nu_{x} + D_{\Omega}^{H} \rightarrow n + p + \nu_{x}$$

Total flux matches prediction!

Explanation: $\nu_e \rightarrow \nu_\mu, \nu_\tau$

Survival probability

$$P(\nu_e) = 1 - \sin^2(2\theta) \sin^2\left(\frac{\delta m^2 c^4 L}{4\hbar cE}\right)$$

Oscillation length $L_0 = \frac{4\hbar cE}{\delta m^2 c^4} \ll L$ (if $\delta m^2 c^4 > 10^{-9}$ eV)
⁸ B ν s have broad spectrum \rightarrow oscillations average to 1/2

$$P(\nu_e) = 1 - \frac{1}{2}\sin^2(2\Theta)$$

But: suppression is factor 3

Matter Enhanced (MSW) Oscillations

Neutrino propagation in matter: forward scattering on electrons leads to effective potential

$$V = \frac{V_e - V_x}{2} = 2\sqrt{2}G_F N_e(r)$$

electron density $N_e(r)$
Wolfenstein (1978)
Mikheyev-Smirhov (1985)

Modified wave equation

$$i\hbar c \frac{d}{dr} \left(\begin{array}{c} |\nu_e\rangle \\ |\nu_\mu\rangle \end{array} \right) = \left(\begin{array}{c} V - \frac{\delta m^2}{4E} \cos(2\theta) & \frac{\delta m^2}{4E} \sin(2\theta) \\ \frac{\delta m^2}{4E} \sin(2\theta) & -V + \frac{\delta m^2}{4E} \cos(2\theta) \end{array} \right) \left(\begin{array}{c} |\nu_e\rangle \\ |\nu_\mu\rangle \end{array} \right)$$

Consider eigenstates of RHS ("matter eigenstates")

<u>Global Fit</u>

Cl and Ga experiments (Homestake, Gallex, SAGE) SuperK zenith angle-recoil energy spectra Kamland

M. C. Gonzalez-Garcia (2004)

Checking Solar ν Oscillations at KamLAND

KamLAND looks for $\bar{\nu}_e$ disappearance

Results favor LMA solution to solar neutrino problem

$$\delta m^2 = 8 \cdot 10^{-5} \,\mathrm{eV}^2, \quad \tan^2(\theta) = 0.4$$

Checking atmospheric ν oscillations: K2K, MINOS

Global Fit - Which Hierarchy?

Have to account for solar and atmospheric neutrino oscillations (ignoring LSND). Two possible schemes

Experimental results determine

$$\theta_{12}, \quad \theta_{23}, \quad \text{all } |\delta m^2|$$

Unknown parameters

hierarchy, θ_{13} , phases

Neutrino Mass

Neutrino Mass

Inverted

Neutrino Mass

What neutrino oscillations tell us about absolute neutrino mass One neutrino is at least as large as $\sqrt{(\delta m_{atmos}^2)} \approx 0.05$ eV. Another is at least as large as $\sqrt{(\delta m_{solar}^2)} \approx 0.01$ eV

They could be larger: but not larger than the ${}^{3}H$ limit of 2.2 eV.

Recall: astrophysics says $\sum m_{\nu} \lesssim 1 \, \mathrm{eV}$