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We presentab-initio CCSD calculations of the3−5He ground states. We perform these calcula-

tions using a mixed basis of oscillator and complex Woods-Saxon states for chosen partial waves.

From this starting point, we build a spherical Gamow-Hartree-Fock basis from a renormalized in-

teraction of the low-momentum type generated from the N3LO two-body potential. The Gamow-

Hartree-Fock basis, which is a Berggren basis, treats bound, resonant, and continuum states on

an equal footing, and is therefore optimal for the description of nuclear states which may be em-

bedded in the continuum. Within thisab-initio approach, we are able to calculate that3−4He

are stable against particle decay, while5He has a non-negligible width and is therefore unstable

with respect to one neutron emission, as is the case experimentally. We illustrate from these cal-

culations that the CCSD approach is as accurate for closed-shell nuclei as for open-shell nuclei

with ±1 nucleon outside a closed-shell. Finally, we perform various tests on the convergence

of our CCSD results. We find that our results are well converged with respect to basis size and

discretization of the continuum integral defining our Berggren basis.
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1. Introduction

In nuclear physics one would ideally like to start from nucleon degrees of freedom. The
dominant philosophy within the nuclear theory community is that the nucleus (at low energies),
as a whole, may be fully described in terms of the interactions between these constituents.Ab-
initio methods such as the Green’s Function Monte Carlo (GFMC) approach [1] and the large-basis
no-core Shell Model (NCSM) approach [2] have been successfully applied to the description of
light nuclei. However, both approaches have limitations with respect to basis size and the number
of active nucleons in the systems. More importantly, these methods have not been utilized to
investigate nuclear widths in unstable nuclei.

It is well known that quantum systems which decay by emission of fragments cannot be de-
scribed as closed quantum systems, in which particles are trapped in an infinite well such as a
harmonic oscillator. In exotic nuclei near the drip lines the outermost nucleons are mainly oc-
cupying loosely bound or unbound single-particle orbitals, resulting in matter densities with halo
characteristics. Such matter densities cannot easily be described by the use of oscillator functions
which do not display the correct asymptotic behavior. A proper description of loosely bound and
unbound nuclei should take into account the coupling of the internal with the external environment.
The coupling of the ‘external’ continuum of positive energy states with the ‘internal’ nuclear states
has, for a long time, been a basic ingredient in nuclear reaction theory. Feshbach was the first to
formulate a unified description of direct and compound nuclear reactions within the projection op-
erator method [3]. He showed that the coupling of the internal with the external environments could
give rise to compound nuclear states, such as multi-channel resonances. Also, in atomic physics,
Feshbach resonances are of great importance. In the early 60s, at the same time as Feshbach’s
work, Fano [4] discussed how the mixing of a configuration belonging to a discrete spectrum with
configurations belonging to a continuous spectrum gives rise to the phenomena ofautoionization,
which is considered a multi-channel resonance.

In nuclear physics, the Gamow shell model [5, 6] has proven to be a reliable tool in the descrip-
tion of nuclei where continuum aspects play a dominant role. The basic idea in the Gamow shell
model approach is to construct a many-body basis from a generalized single-particle basis which
treats bound, resonant, and continuum states on equal footing. Berggren was the first to rigorously
derive such a basis [7]. The Berggren basis is an analytic continuation of the usual completeness
relation in the complex energy plane. Recently, we reported the first results on loosely bound and
resonant states in nuclei, starting from a realistic interaction and a Gamow-Hartree-Fock basis [8].
However, anab-initio description of such nuclei within the Gamow shell model approach might
presently not be feasible since the computational cost scales combinatorially with the number or-
bitals, and one typically needs a large number of orbitals for each partial wave in order to discretize
the continuum integral accurately.

In order to be able to provide anab-initio description of nuclei with loosely bound and un-
bound characteristics, we may need to depart from standard matrix diagonalization methods. In
this work we discuss thecoupled-clustermethod [9–12] as a starting point for a description of
exotic nuclei. Computational scaling of the coupled-cluster method enables one to reach accurate
results in extremely large model spaces. At the coupled-clusters in singles and doubles (CCSD)
level, floating-point operation counts scale asn2

on4
u, wheren0 is the number of occupied orbitals
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andnu is the number of unoccupied orbitals in the single-particle basis. Such soft scaling, when
compared to the nearly combinatorial scaling of diagonalization procedures (as a function of basis
size and/or particle number), allows one to build an extension of anab-initio description of nuclei
to the medium-mass region starting with nucleon degrees of freedom. The coupled-cluster method
is also capable of systematic improvements and amenable to parallel computing.

The outline of this paper is the following. In Sec.2 we give a brief outline of the coupled-
cluster theory. In Sec.3 it is discussed how one may derive a renormalized interaction of the
low-momentum type (Vlow−k) from similarity transformation techniques. In Sec.4 it is outlined
how a Gamow-Hartree-Fock basis may be derived from the bare nucleon-nucleon interaction, and
in Sec.5 we present CCSD results of the ground states of the3−5He isotopes using a Gamow-
Hartree-Fock basis. Convergence with respect to basis size and number of discretization points is
also analysed. Finally, in Sec.6 we conclude and mention future perspectives for this work.

2. Coupled-Cluster Theory

In coupled-cluster theory, we make an exponential ansatz for the exact correlated ground state
expressed through,

Ĥ|Ψ〉= Ĥ exp(T)|Φ0〉= Eexp(T)|Φ0〉, (2.1)

here|Φ0〉 is a chosen non-correlated reference Slater determinant such as, for example, the Hartree-
Fock state. The fully correlated many-body state|Ψ〉 is constructed by letting the correlation oper-
ator exp(T) operate onΦ0. The operatorT is a linear combination ofn-particle-n−hole excitation
operatorsT = T1 +T2 + ... of the form,

Tn = ∑
ab...,i j ...

tab...
i j ... a†

aa†
b · · ·a jai . (2.2)

In order to derive the coupled-cluster equations, we start by rewriting the Hamiltonian in normal-
ordered form,

H = ∑
pq

fpq
{

a†
paq
}

+
1
4 ∑

pqrs
〈pq||rs〉

{
a†

pa†
qasar

}
+ 〈Φ0|H|Φ0〉= HN +E0, (2.3)

hereHN is the normal-ordered part ofH, andE0 is just the vacuum expectation value ofH. The
Fock matrix elementfpq is given by,

fpq = 〈p|t|q〉+∑
i

〈pi||ri〉. (2.4)

Using the normal-ordered Hamiltonian and projecting Eq.2.1 from the left with 〈Φ0|exp(−T)
gives an equation for the coupled-cluster correlation energy,

ECC = 〈Φ0|exp(−T)ĤN exp(T)|Φ0〉. (2.5)

This equation may be simplified by using the Hausdorff commutator expansion of the similarity
transformed Hamiltonian exp(−T)ĤN exp(T), which truncates exactly at quadruply nested com-
mutators for a two-body Hamiltonian. Using Wick’s theorem for the commutators, it may be
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shown that the only nonzero terms in the Hausdorff expansion are those in whichHN has at least
one contraction with every cluster operator on its right, which is expressed through,

exp(−T)ĤN exp(T)|Φ0〉= [HN exp(T)]C |Φ0〉. (2.6)

HereC indicates terms in which the Hamiltonian is connected to every cluster operator on its right.
The equation for the coupled-cluster energy is then simply given by,

ECC = 〈Φ0|
[
HNT1 +

1
2

HNT2 +
1
2

HNT2
1

]
C
|Φ0〉= ∑

ia

fiata
i +

1
4 ∑

abi j

〈i j ||ab〉tab
i j +

1
2 ∑

i jab

〈i j ||ab〉ta
i tb

j .

(2.7)
This equation for the coupled-cluster correlation energy is an exact result which holds for two-
body Hamiltonians and is independent of any truncations of the correlation operatorT. In order to
evaluate the coupled-cluster correlation energy, it is obvious that we need to determine the 1p−1h
and 2p− 2h excitation amplitudes,ta

i and tab
i j , appearing in Eq. 2.7. Although onlyta

i and tab
i j

amplitudes appear in the energy expression in Eq.2.7, the higher order cluster equations will mod-
ify the equations forta

i andtab
i j and, therefore indirectly, the coupled-cluster energy equation. The

algebraic equation for the excitation amplitudestab...
i j ... are obtained by left-projecting the similarity-

transformed Hamiltonian with ann-particle-n−hole excited Slater determinant giving

〈Φab...
i j ... | [HN exp(T)]C |Φ0〉= 0, (2.8)

When written in its full glory, one ends up with a non-linear set of equations for the excitation
amplitudes. The derivation of the amplitude equations is a tedious task using Wick’s theorem, but
using a diagrammatic technique the amplitude and energy equations may be written down much
more easily. The amplitude equations are nonlinear, and may be solved iteratively using conver-
gence accelerators such as the direct inversion in the iterative subspace (DIIS) [13] technique or
Krylov subspace accelerated inexact Newton (KAIN) techniques [14]. In our coupled-cluster cal-
culations of open-shell nuclei, we have found that convergence is considerably much more difficult
to obtain than for closed-shell nuclei. However, combining the iterative convergence accelerators
with step-restriction and line-search in each iteration, convergence can be obtained within a reason-
able number of iterations. Approximations in coupled-cluster theory appear only when the linear
series is truncated at a levelTn, wheren is smaller than the number of particles in the system, and
in this work we report results for the3−5He isotopes truncating the correlation operatorT at the
CCSD level. We note that even though theT-operator is truncated at 2p− 2h, the exponential
ansatz indirectly induces higher excitations since we have products ofT1 andT2 operators when
expanding the exponential.

3. Renormalized nucleon-nucleon interaction of the low-momentum type.

The nuclear many-body Hamiltonian we work with is given by,

H = T−TCoM =
(

1− 1
A

) A

∑
i=1

k2
i

2m
+

A

∑
i< j

(
V(i, j)−

k i ·k j

mA

)
, (3.1)
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hereV is the nucleon-nucleon interaction given by the N3LO effective field theory expansion [15],
based on chiral perturbation theory next-to-next-to-next-to-leading order. One would need huge
basis sets in order to capture the high-momentum modes of the interaction and achieve conver-
gence for energies and wave functions. In order to make calculation feasible, the nucleon-nucleon
interaction has to be renormalized in order to soften the core of the interaction. In this work we con-
struct a renormalized interaction following the scheme outlined in [16]. We construct an effective
interaction where the high momentum modes of the full two-body interaction have been integrated
out. This interaction has become known asVlow−k. Vlow−k is energy and nucleus independent, and
reproduces exactly nucleon-nucleon data below a cutoffΛ determining the border between low and
high momentum modes.

In the following, we briefly outline how to obtain a Hermitian interactionVlow−k based on the
similarity transformation discussed in Ref. [17]. A unitary transformation can be parametrized in
terms of the model spaceP and the excluded spaceQ via

U =

(
P(1+ω†ω)−1/2P −Pω†(1+ωω†)−1/2Q

Qω(1+ω†ω)−1/2P Q(1+ωω†)−1/2Q

)
, (3.2)

where the wave operatorω is defined to satisfy the condition

ω = QωP, (3.3)

the so-called decoupling condition [18]. The above transformation depends only on the opera-
tor ω which mixes theP andQ subspaces and is in some sense “the minimal possible” unitary
transformation. Following the method of Ref. [19], one obtains

U = (1+ω −ω
†)(1+ωω

† +ω
†
ω)−1/2. (3.4)

The operatorU leads to the effective interactioñV using the definition

Ṽ = U−1(T +V)U −T, (3.5)

whereT is the kinetic energy of the nucleons andV is the free nucleon-nucleon interaction. If
we can determine the wave operatorω, the spectrum of the effective Hamiltonian will correspond
to exactlyNP eigenvalues of the full problem. In order to derive the renormalized interaction in
momentum space, one starts with the following definitions of theP− andQ−space,

P =
{
|k̄〉, |k| ≤ Λ

}
, Q =

{
|k̄〉, Λ < |k|< ∞

}
. (3.6)

The model spaceP here defines all the low-momentum modes determined by the cutoffλ , while the
complementaryQ− space consists of the high-momentum modes. Solving the momentum space
Schrödinger equation in the full space, one may obtain the solution of the wave-operatorω in a
plane-wave basis and finally obtain the effective low-momentum interactionVlow−k,

〈k̄|PVlow−kP|k̄′〉 = ∑
k′′

∑
k′′′
〈k̄|P(P+ω

T
ω)1/2P|k̄′′〉〈k̄′′|P(T +V)P|k̄′′′〉〈k̄′′′|P(P+ω

T
ω)−1/2P|k̄′〉

− k2

m
δkk′ , (3.7)
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where|k̄〉= k
√

w|k〉. See Ref. [19] for further details. Typically,Λ is chosen around 2 fm−1, in or-
der to capture the physics of elastic nucleon-nucleon scattering for energies< 350 MeV. However,
the construction of an effective two-body interaction in a model space for theA−body problem will
necessarily generate three- and many-body forces. At the two-body level, it has been shown that
all low-momentum interactions collapse onto the same curve for a cutoff∼ 2 fm−1, and therefore
displays a model independence. This is only true at the two-body level. Many-body calculations
starting with a two-body low-momentum interaction display a considerable dependence on the par-
ticular interaction model from which it was derived. Further, many-body calculations starting with
a two-body low-momentum interaction typically give rise to considerable cutoff dependence and
over-binding, especially in the medium-mass regimes. The model-independence can only be re-
stored at theA-body level by introducing allA−body effective interactions generated through a
similarity transformation of theA-body problem. The hope is that three-body effective interactions
are sufficient to restore model-independence, and that they can be treated perturbatively. Prelimi-
nary CCSD results for the ground state of16O indicates that the low-momentum three-body force
is indeed repulsive and can be treated perturbatively [20]. However, in this work we have truncated
the Hamiltonian at the two-body level and neglect the effect of three-body forces.

4. Gamow-Hartree-Fock single-particle basis

In our study of5He, which is an unbound nucleus, the single-particle basis has to be con-
structed in such a way that correlation effects between nucleons in the scattering continuum can
take place. To account for this non-negligible coupling with the continuum, we construct our basis
using the Berggren formalism [7] in which bound, resonant, and continuum states are treated on an
equal footing. This single-particle basis is therefore optimal for construction of a many-body basis
in which loosely bound and unbound nuclear states may be expanded. For our study of the3−4He
ground states, a Berggren representation is not necessary since they are stable nuclei. However,
we use the same Berggren basis for all nuclei studied here, so that we may be able to confirm the
stability of 3−4He and the resonant character of5He.

Further, we would like to construct our single-particle basis from the self-energy of the nucleon-
nucleon interaction so that our basis is optimal for the particular nucleus under study. At lowest
order in perturbation theory, the self-energy is just the Hartree-Fock basis. In order to construct
the Hartree-Fock basis, one needs to transform the nucleon-nucleon interaction from the relative
and center-of-mass frame to the laboratory frame. In the case of an oscillator basis this proceeds
through the well-known Moshinsky transformation; for general bases, the transformation is carried
out with the so-called vector brackets [21]. If our basis is defined in the complex energy plane, the
vector-bracket transformation coefficients have to be analytically continued in the complex plane.
However, the vector-bracket transformation coefficients are not easily continued in the complexk-
plane, and we therefore proceed via the numerically and mathematically simpler route outlined in
Ref. [8]. In Ref. [8] it was also illustrated how matrix elements of the nucleon-nucleon interaction
may be obtained in a Berggren basis by expanding the interaction in a finite oscillator basis, i.e.

〈ab|Vosc|cd〉 ≈
N

∑
α≤β

N

∑
γ≤δ

〈ab|αβ 〉〈αβ |Vlow−k|γδ 〉〈γδ |cd〉, (4.1)

6
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where the two-body oscillator completeness has been truncated atN for numerical purposes. Using
a renormalized interaction of the low-momentum type, energies and wave functions of loosely
bound and resonant systems were shown to converge quickly with respect to the oscillator basis
size. The fast convergence is just another illustration of the fact renormalized interactions reduce
infinite spaces to smaller model spaces, making calculations practical. From the matrix elements
in Eq.4.1, we may construct our Gamow-Hartree-Fock basis from

〈a|hHF|c〉= 〈a|t|c〉+ 1

ĵa
2 ∑

J
∑
h

Ĵ2〈ah|Vosc|ch〉, (4.2)

whereh labels all quantum numbers of the proton and neutron hole states, andĴ2 = J(J+1). The
Hartree-Fock equation is iterated until self-consistency is obtained. One typically needsf -g shells
in no-core calculations in addition to including the continuum for each partial wavel j . Therefore
we are performing our calculations in an enormous many-body configuration space due to the
dense discretization of the continuum integral, and even CCSD calculations become extremely
computationally memory and time consuming.

To make calculations numerically feasible at present, we therefore initialize our Hartree-Fock
calculations with a mixed basis consisting of a finite set of complex Woods-Saxon bound, resonant,
and non-resonant continuum states and a finite set of harmonic oscillator basis states for chosen
partial waves. For protons, we strictly define the space by a finite set of harmonic oscillator wave
functions, while for the neutron space we use a complex Woods-Saxon basis for thes-p partial
waves and harmonic oscillator wave functions for the higher partial wavesd-g. This choice of
mixed basis may be justified since we are dealing with the ground states of the3−5He isotopes. For
these nuclei, the proton separation energy is typically on the order of 20−30 MeV, and they are
mainly occupying deeply bounds-orbits. On the other hand, it is well known that the5He ground
state is a resonance with width∼ 0.65 MeV and with spin and parityJπ = 3/2−, implying that the
outermost neutron in5He is mainly in thep3/2 shell.

We construct the complex Woods-Saxon basis by employing the Contour Deformation Method
in momentum space, as outlined in Ref. [22]. In order to check the validity and convergence of
our results, we construct our single-particle Berggren basis on two very different contours in the
complexk-plane. In Figs.1 and2 we sketch how the two different contoursL+

1 andL+
2 are defined

respectively. The contour1 is of triangular shape and defined by three line segments joined by
pointsA andB in the complexk-plane. The contourL+

2 consists of a rotated and a translated line
segment joined at pointA in the complexk-plane. Utilizing a contour of the typeL+

2 , it was shown
in Ref. [22] that both resonant and anti-bound states converge quickly with respect to the number
of integration points. Further, it was shown that for the contourL+

2 , stable solutions of all physical
scattering amplitudes, such as thet-matrix, may be obtained by a spectral representation of the
Green’s function. We discretize the contoursL+

1 andL+
2 by Gauss-Legendre quadrature.

Ideally we would like to construct our many-body Berggren basis utilizing as few continuum
states as possible. In Tables1 and 2 we study the convergence of thes1/2 hole andp3/2 particle
states in4He at the Hartree-Fock level with respect to the number of integration points, using the
two contours given in Figs.1ăand2. For all results reported here our renormalized low-momentum
interaction was derived for a cutoffΛ = 1.9 fm−1 using the N3LO potential. For the oscillator
expansion and basis states, we usedh̄ω = 20MeV. The total number of integration points is given

7
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L+

Re[k]

Im[k]

CB

A

Figure 1: ContourL+
1 in the complexk-plane used in construction of the single-particle Berggren basis. The

contour is specified by pointsA,B, andC discussed in the text.

ă

Re[k]

Im[k]

BA

Figure 2: ContourL+
2 in the complexk-plane used in construction of the single-particle Berggren basis. The

contour is specified by pointsA andB discussed in the text.

ă

by n, while ni gives the number of points used to discretize a given line segment on the contour.
TheL+

1 contour is defined by the pointsA = 1.5−2iMeV andB = 3MeV, and the contourL+
2 by

the pointA = −2iMeV in the complex energy plane. The corresponding points in the complexk-
plane are proportional to the square root of the points in the energy plane. We see that the hole and
particle energies converge to the same values for the two different contours; this is expected since
the location of bound and resonant poles in the complexk-plane is given by the pole structure of the
S-matrix and not by the particular choice of contour. Further, we see that satisfactory convergence
is obtained with a total number of points given byn ∼ 20. For the proton space we used 5s5p
oscillator wave functions with̄hω = 20MeV. Thep3/2 proton state does not have a width; this is a
consequence of using oscillator functions for our proton-space.

From the above numerical analysis on convergence, we choose to discretize our contour with
20 points, consequently our Gamow-Hartree-Fock basis for each of thes-p partial waves is given by
20 states including bound, resonant, and non-resonant continuum states. From this mixed Gamow-
Hartree-Fock basis, we may go ahead and construct our reference stateΦ0 which initializes our
CCSD calculations.

8
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Neutrons Protons

s1/2 p3/2 s1/2 p3/2

n n1 n2 n3 Re[E] Im[E] Re[E] Im[E] Re[E] Im[E] Re[E] Im[E]

15 3 3 9 -24.323 0.000 1.027 -0.536 -23.350 0.000 2.933 0.000
20 5 4 11 -24.323 0.000 1.000 -0.546 -23.350 0.000 2.930 0.000
25 7 5 13 -24.323 0.000 1.002 -0.548 -23.350 0.000 2.930 0.000
30 8 6 16 -24.323 0.000 1.002 -0.548 -23.350 0.000 2.930 0.000

Table 1: Convergence of thes1/2 hole and thep3/2 particle states in4He with increasing number of dis-
cretization points along the triangular contourL+

1 . The initial proton space was given by 5s5p oscillator
states.

Neutrons Protons

s1/2 p3/2 s1/2 p3/2

n n1 n2 Re[E] Im[E] Re[E] Im[E] Re[E] Im[E] Re[E] Im[E]

15 3 12 -24.324 -0.001 1.003 -0.547 -23.352 0.001 2.926 0.001
20 4 16 -24.323 0.000 1.002 -0.547 -23.350 0.000 2.930 0.000
25 7 18 -24.323 0.000 1.002 -0.548 -23.350 0.000 2.930 0.000
30 8 16 -24.323 0.000 1.002 -0.548 -23.350 0.000 2.930 0.000

Table 2: Convergence of thes1/2 hole and thep3/2 particle states in4He with increasing number of dis-
cretization points along the rotated+translated contourL+

2 . The initial proton space was given by 5s5p
oscillator states.

5. CCSD results for3−5He ground states

We turn to the calculations of the3−5He isotopes within coupled cluster singles and doubles
approximation. In this paper, we present results concerning various convergence criteria, and we
compare to exact diagonalization of the many-body Hamiltonian using small basis sets. This will
help us assess the accuracy of our CCSD results. We first compare the CCSD energy calculations
of 3−5He with results obtained through diagonalization. In order to allow for an exact solution
without particle-hole truncations in the wave function we define a small model space comprising
the single-particle orbits 4s3p1d, with harmonic oscillator states for protons and neutrons. The
numbers in 4s3p1d label the total number of nodes included. This means that we have fives-
waves, fourp waves and twod waves. In total there are 27 single-particle orbits in thej-scheme
for eeach particle species. Our CCSD results are given both for a reference Slater determinant
built from a spherical oscillator and a spherical Hartree-Fock basis. Since we are working with a
spherical single-particle basis, each partial wavel j is degenerate with respect to spin projection
mj ; therefore, there is an ambiguity in defining a unique reference Slater determinant for open-
shell nuclei. For a particular nuclei with known spinJ, we define our reference state such that
M = J; further, the orbits with largest spin projectionmj are filled first. Table3 reports exact
results versus results obtained at the CCSD level of approximation. For the cases considered, the
CCSD results do not differ more than∼ 500 keV from the exact results, implying that higher-order
corrections such as triples corrections to the coupled-cluster wave function should be small. It is
also quite encouraging that the single-reference CCSD works as well for open as for closed-shell

9
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nuclei, starting with a spherical basis. Table4 gives the converged CCSD ground state energies for

Method 3He 4He 5He

CCSD (OSC) -6.21 -26.19 -21.53
CCSD (HF) -6.10 -26.05 -21.52

Exact -6.45 -26.30 -22.01

Table 3: Comparison of CCSD and exact calculations of the3−5He ground states using the low-momentum
N3LO nucleon-nucleon interaction. The single-particle model space consisted of 4s3p1d oscillator states
for the proton and neutron side. The energiesE are given in MeV.

the3−5He isotopes for an increasing number of partial waves in our single-particle basis.s-p refers
to a 5s5p proton and 20s20p neutron space;s-d refers to a 5s5p5d proton and 20s20p5d neutron
space;s- f refers to a 5s5p5d4 f proton and 20s20p5d4 f ; and finallys-g refers to a 5s5p5d4 f 3g
proton and 20s20p5d4 f 3g neutron space, respectively. We see that the results are reasonably well

3He 4He 5He

l j Re[E] Im[E] Re[E] Im[E] Re[E] Im[E]

s− p -4.94 0.00 -24.97 0.00 -20.08 -0.54
s−d -6.42 0.00 -26.58 0.00 -23.56 -0.22
s− f -6.81 0.00 -27.27 0.00 -24.56 -0.17
s−g -6.91 0.00 -27.35 0.00 -24.87 -0.16

Expt. -7.72 0.00 -28.30 0.00 -27.41 -0.33

Table 4: CCSD calculation of the3−5He ground states with the low-momentum N3LO nucleon-nucleon
interaction for increasing number partial waves. The energiesE are given in MeV for both real and imaginary
parts. Experimental data are from Ref. [23].

converged with respect to the number of partial waves in our basis. Going from thes- f to the
s-g model space we only obtain 300 keV more binding for5He, while the imaginary part only
changes by 10 keV. Further, it is seen that the experimental binding energy of3He and4He is well
reproduced usingVlow−k derived from N3LO and a cutoffΛ = 1.9fm−1. Also we confirm that their
ground states are stable with respect to particle emission since the calculated width is negligible.
For the5He calculation, we confirm that its ground state is unstable with respect to one-neutron
emission; however, the width obtained is about half that of the experimental value,Γ ∼ 0.65MeV.
We are also missing∼ 2.5MeV for the real part of the5He ground state energy. As seen from
Table3, this can hardly be assigned to triples correction in the coupled-cluster wave function. It
is more likely that the extra binding comes from three-body forces. It is, however, interesting to
observe that we get under-binding for5He usingVlow−k, while for heavier closed-shell nuclei such
as16O, a large over-binding is typically observed.

Although our results are reasonably well converged with respect to the number of partial waves
in our basis, there are still other convergence aspects which must be considered. First, we have
the energy truncation of the single-particle oscillator basis (2n+ l ≤ 10) and a truncation of the
expansion of the interaction in Eq.4.1. If our basis is complete there will be no dependence on
the particular choice of̄hω defining the oscillator basis functions. In order to check whether the
basis is complete in this sense, we performed calculations of the5He ground state in thes-d space

10
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Figure 3: h̄ω dependence of the real part of the5He ground state energy.
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Figure 4: h̄ω dependence of the imaginary part of the5He ground state energy.

for several different values of̄hω. In Figs.3 and4 we plot the real and imaginary parts of the
5He ground state energy as we variedh̄ω in the energy interval̄hω ∈ [14,28]MeV. We observe
that the dependence on̄hω is very weak. For the real part it varies no more than∼ 100 keV and
for the imaginary part∼ 10 keV in the range of̄hω values. This is an indication that our basis is
approximately complete, and the error introduced through our basis truncation is smaller than the
expected accuracy of the CCSD approximation.

Finally, we assess whether we have convergence with respect to the number of discretization
points (n = 20) of the contourL+

1 , defining our complex Woods-Saxon basis. We have already
shown in the previous Section that the Hartree-Fock energy for4He is well converged with only
n= 20 points. In order to check whether the CCSD energy is converged, we performed calculations
of the5He ground state in thes-d space using the two different contours given in Figs.1 and2. If
our discretization of the contours is dense enough, the two calculations should give exactly the
same results for both the real and imaginary parts of the energy. In Figs.5 and6 we give a plot of
the convergence of the real and imaginary parts of the coupled-cluster energy for the two different
contours. It is seen that the real part of the CCSD energy differs by 10 keV and the imaginary part
differs by only∼ 3 keV, indicating that our results are well converged with respect to the number
of integration points used to derive the Berggren basis for thes-p neutron space.
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Figure 5: Convergence of the real part of the5He ground state energy for two different contoursL+. The
dashed line are represents convergence with a triangular contour and the solid for a rotated+translated con-
tour.
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Figure 6: Convergence of the imaginary part of the5He ground state energy for two different contoursL+.
The dashed line are represents convergence with a triangular contour and the solid for a rotated+translated
contour.

6. Conclusion and future perspectives.

We presented CCSD calculations of the3−5He isotopes. Using a Gamow-Hartree-Fock basis,
we depart from Hermitian to non-Hermitian representations, and are therefore able to calculate
resonant widths starting with the bare nucleon-nucleon interaction and nucleon degrees of free-
dom. The calculated ground state energies of3−4He are very close to experimental values using
a renormalized interaction of the low-momentum type (Vlow−k) derived from the N3LO potential.
For the5He ground state, we are able to confirm that it is unstable with respect to one-neutron
emission, we get a width∼ 0.35 MeV compared to the experimental value∼ 0.65 MeV. We have
shown that single-reference CCSD is an accurate approximation for closed-shell nuclei and nuclei
with ±1 nucleon outside a closed-shell by direct comparison with exact results in a small model-
space. Convergence with respect to model-space size and discretization of the deformed contour
L+ defining our Berggren basis has been checked, and we are quite confident that our results are
well converged. Future work will involve implementation of triples corrections, three-body forces,
and the study of matter densities in loosely bound and unbound nuclei such as11Li.
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