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1. Introduction

In order to understand the properties of ordinary matter (baryons and mesons) it is necessary to
understand the properties of the ground state of QCD. The best way to test the physical properties
of a system is to vary its defining conditions in order to test its reactions. To do that in QCD we
have to consider a system different from the vacuum but sufficiently simple in order to be able to
study it. Some possibilities are to study extremely dense matter or matter at very high temperature
as at the beginning of our universe. A bonus in studying the ground state of these particular systems
is that, due to the fundamental property of asymptotic freedom, QCD simplifies a lot. In the case
of very high temperature one expects QCD to behave as a free theory describing a non interacting
gas of quarks and gluons. A similar conclusion would be true also at high density except that
having to do with fermions we have to keep into account the exclusion principle. As a consequence
a very degenerate Fermi sphere is formed and, if an arbitraryattractive interaction is present, we
expect that the phenomenon of color superconductivity takes place [1, 2]. This is what we expect
in QCD, since at very high density the theory can be describedin terms of a single gluon exchange
and this provides an attraction in the antisymmetric diquark state. From this we get informations
about two asymptotic regions of the phase diagram of QCD in the variables(µ ,T), whereµ is the
baryon chemical potential. The two regions are respectively (µ ≈ 0,T → ∞) and(µ → ∞,T ≈ 0).
However we would like also to know what happens in the intermediate region and in particular we
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would like to determine the order of the phase transitions from the hadronic phase to the quark-
gluon plasma and to the color superconducting phase. In thiscontext the possibility arises that
going from the hadronic to the gluon-quark plasma phase, there is a cross-over for small chemical
potentials and a first order for higher values ofµ . In this case, the end point of the first-order line
is called the "critical point" of QCD. The study of this intermediate region is quite complicated
since perturbation theory cannot be applied to QCD and furthermore at finite chemical potential
the usual lattice approach fails. In this talk I will discussthe historical path through which the idea
of a critical point came about and some of the attempts of locating it. Therefore I will not discuss
the physics associated to the critical point and how this point can be detected experimentally. Both
these topics are treated by other speakers in this conference and many nice reviews about the subject
exist in the literature, see for example [3, 4, 5, 6, 7].

2. Order parameters

The quark gluon plasma phase can be thought of as a deconfined phase and therefore one
would like to define an order parameter to distinguish between this and the confined phase (the
hadronic one). Such an order parameter can be easily defined for a theory without quarks (or,
equivalently formq → ∞). This is the Polyakov loop [8] defined as

L(~x) = trΩ(~x), Ω(~x) = Pexp

(

i
∫ β

0
dtA0(~x, t)

)

(2.1)

with β = 1/kT andA0 the time component of the gluon field. It turns out that the expectation value
of the loop is asymptotically given by

〈L〉 ≈ lim
r→∞

e−βV(r) (2.2)

with V(r) the potential between a static quark-antiquark pair at a distancer. Therefore the confined
and the deconfined phase are distinguished by the value of〈L〉

Confined phase :〈L〉 = 0
Deconfined phase :〈L〉 6= 0 (2.3)

From a symmetry point of view,L characterizes the breaking of the center of the color group,Z(Nc),
in the case ofNc colors. From asymptotic freedom we expect that at some critical temperatureTc

〈L〉 = 0, T < Tc, 〈L〉 6= 0, T > Tc (2.4)

For finite quark masses we expectV(r) to remain finite forr → ∞. In fact the string of the color
flux between the two color charges is expected to break when the potential energy equals the mass
of the lowest hadronic state,Mh. Therefore〈L〉 does not vanish in the hadronic phase but rather
goes exponentially to zero forMh → ∞

〈L〉 ≈ e−βMh (2.5)

When quarks are present one can define another order parameter, the chiral condensate,〈ψ̄ψ〉,
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Figure 1: The Polyakov looop and the chiral condensate susceptibilities in the case of two flavor QCD. This
calculation has been made with a quark mass about four times bigger than the one needed for obtaining the
physical pion mass [9].

characterizing the breaking of the flavor symmetry (for instance, for three massless flavors the
chiral symmetry would beSU(3)L ⊗SU(3)R⊗U(1)V). In this case we expect

〈ψ̄ψ〉 = 0 for T → ∞, 〈ψ̄ψ〉 6= 0 for T → 0 (2.6)

Of course, sincemq 6= 0, this order parameter never vanishes but it will have a sharp variation, or a
crossover, close to the transition. The susceptibilities of these two order parameters

χL ≈ 〈L2〉− 〈L〉2, χm ≈
∂ 〈ψ̄ψ〉

∂mq
(2.7)
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have been evaluated on the lattice [9] in the case of two flavors. The results are shown in Fig.
1. The figure shows very clearly that the deconfinement and thechiral transition coincide at zero
baryon density.

Our final conclusion is that the phase structure is characterized by

T < Tc confined phase :〈L〉 ≈ 0, 〈ψ̄ψ〉 6= 0
T > Tc deconfined phase :〈L〉 6= 0, 〈ψ̄ψ〉 ≈ 0 (2.8)

Given this result, in the following we will concentrate on the chiral transition which is easier to
deal with.

3. First attempts to evaluate the phase diagram of QCD

One of the first attempts to evaluate the(µ ,T) phase diagram of QCD was done in ref. [10].
The authors evaluated the gap equation for the chiral condensate in the approximation of one gluon-
exchange. However the paper did not contain a discussion about the nature of the chiral transition.
Other attempts [11, 12] were done using the Coulomb gauge andneglecting the retardation effects
in the gluon propagator. This approach is simple since it is very close to a non-relativistic treatment
and it allows to vary the static potential according to the assumptions for the gluon exchange. For
instance, the static potential has been chosen as aδ -function, Coulomb type or confining. In all
these cases these authors have found a second order transition in the plane(µ ,T).

A completely different approach was developed in refs. [13,14]. The authors derived effective
lagrangians for different gauge groups and a single flavor. In particular they found that forNc = 2
the line of transition is second order, whereas forNc = 3 it is first order.

The paper in ref. [15] started the analysis of the problem by using a Nambu-Jona Lasinio
(NJL) model. The case studied wasNf = 2 andNc = 3. The idea is to simulate the gluon interaction
through an effective four-fermi coupling. Although there is no reason to expect quantitative results
close to real QCD, one hopes that universal effects can be recovered. In ref. [15] the interaction
lagrangian used is

LI = Lsym+Ldet

Lsym= 1
2g1

[

(ψ̄ψ)2 +(ψ̄ iγ5~τψ)2 +(ψ̄ iγ5ψ)2 +(ψ̄~τψ)2
]

Ldet =
1
2g2

[

(ψ̄ψ)2 +(ψ̄ iγ5~τψ)2− (ψ̄ iγ5ψ)2− (ψ̄~τψ)2
]

(3.1)

whereLdet is the t’Hooft determinant breaking the axial symmetryU(1)A, written for Nf = 2. In
general

Ldet =
1
2

g2 [det{ψ̄(1+ γ5)ψ}+h.c.] (3.2)

For simplicity the authors did the choiceg1 = g2 = g. Therefore the model depends on 3 parame-
ters, the mass of the quarksm, the couplingg and the cutoffΛ defining the model. These parameters
can be determined at zero temperature and density by using the physical values ofmπ , fπ and a
reasonable value for the condensate. The results, in the plane (T,µ), are shown in Fig. 2 for two
different choices of the parameters: I:m= 5.5 MeV, g = 5.074×10−6 MeV−2, Λ = 631MeV; II:
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Figure 2: The continuous lines and the dashed lines correspond to first-order and to second-order or
crossover transitions. The label I and II refer to differentchoices of the parameters, see the text.

m= 5.0 MeV, g = 2.337×10−6 MeV−2, Λ = 925MeV. The corresponding values of the conden-
sates are in the first case〈ψ̄ψ〉 = (−247)3 MeV3 and in the second one〈ψ̄ψ〉 = (−359)3 MeV3.
In the figure we see the occurrence of a critical end point where the first order transition line ends.

Refs. [16, 17] developed an approximation scheme to QCD (today known as ladder QCD) by
using the Cornwall, Jackiw and Tomboulis (CJT) effective action [18]. The calculation was done
at two loops and it is equivalent to sum up the ladder diagramswith gluon exchanged. A further
approximation was to use an ansatz for the self-energy of thetype

Σ(p,T,µ) = χ(T,µ)
Λ

Λ2 + p2 (3.3)

in order to provide an asymptotic behavior consistent with the operator product expansion.Λ is
a mass scale parameter andχ(T,µ) is determined by minimization of the CJT effective potential.
The fermionic condensate is related toχ(T,µ) by the relation

〈ψ̄ψ〉T,µ = 3
Λ3

g2(T,µ)
χ(T,µ) (3.4)

At T = µ = 0, g(T,µ) is the QCD gauge coupling. The dependence ofg on T andµ was chosen
in a way consistent with asymptotic freedom [16]. AtT = µ = 0 the parameters were chosen to
be Λ = 282 MeV, αs = 0.902. In this way〈ψ̄ψ〉, renormalized at the scaleΛ, turns out to be
(−197 MeV)3. The results of this analysis are shown in Fig. 3. The lines denoted byLI and
LII correspond to first-order and second-order transitions (inthese papers the massless quark case
was considered). These two lines are separated by the critical end point (a tricritical point in this
case). The dashed lineγ is the continuation of the points where the second derivative vanishes at
the minimum, whereas the lineδ is the location of the points where the minima of the potential go
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Figure 3: The continuous linesLI andLII correspond to the first and second order transitions respectively.
The dot is the tricritical point, designed as(µt ,Tt). The dashed linesγ andδ (spinodal lines) are explained
in the text.

from three to one (see also Fig. 4). These two lines are calledspinodal lines. The regions between
γ andLI andLI andδ correspond to metastable states. We see that the qualitative results are very
similar to the ones obtained in [15] for a completely different model. Since the tricritical point is
where second order and first order transitions meet together, one can perform a Ginzburg-Landau
expansion of the effective potential. This was done in [19].By performing the expansion up to 6th

order in the condensateχ one gets

V(χ ,T,µ) = V(0,T,µ)+a2(T,µ)χ2 +a4(T,µ)χ4 +a6(T,µ)χ6 (3.5)

The coefficientsai(χ ,T) have been evaluated in [19]. From this expression one easilyderives the
phase diagram in the plane(a2/a6,a4/a6). In fact, it turns out thata6 is a positive definite quantity
in the region around the critical point. The resulting phasediagram is illustrated in Fig. 4 (see ref.
[20]). The phase diagram of Fig. 3 is obtained from this one bymapping the plane(a2/a6,a4/a6)

into the plane(µ ,T), at least in the neighborhood of the tricritical point. The second order line
corresponds toa2 = 0 anda4 > 0, whereas the tricritical point is located ata2 = a4 = 0. We see
clearly from Fig. 4 the presence of the metastable regions. By using this approach it is possible to
evaluate the critical exponents around the tricritical point. In fact, when close to it we can write

ai(T,µ) ≈ aiT

∣

∣

∣

∣

T −Tc

Tc

∣

∣

∣

∣

+aiµ

∣

∣

∣

∣

µ −µc

µc

∣

∣

∣

∣

, i = 2,4 (3.6)
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symmetric phase

a  /a4 6
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Figure 4: The phase diagram arising form the Ginzburg-Landau expansion of the effective potential. The
two dashed lines correspond to the dashed linesγ and δ of the previous figure. In particular, the line
a2 = 0, a4 ≤ 0 corresponds to the lineγ. The shape of the effective potential in the various regionsis shown
in the figure.

Let us introduce a quark mass term which, in this variables, is proportional to the fieldχ , say

Vm = −hχ (3.7)

Then the minimum condition becomes

h = 2a2χ +4a4χ3 +6a6χ5 (3.8)

and denoting byθ eitherµ or T one gets [19]

〈χ〉mq=0,θ→θc ≈

∣

∣

∣

∣

1−
θ
θc

∣

∣

∣

∣

1/4

→ β =
1
4

〈χ〉mq→0,θ=θc ≈ m1/5
q → δ =

1
5

∂ 〈χ〉
∂mq mq=0,θ→θc

≈

∣

∣

∣

∣

1−
θ
θc

∣

∣

∣

∣

−1

→ γ = 1 (3.9)

whereα , β andγ are the usual critical exponents. Using these relations andthe scaling relations
for a three-dimensional system (since the finite temperature cutoff the time-like modes):

α = 2−3ν , β =
ν
2
(1+ η), γ = (2−η)ν , δ =

5−η
1+ η

(3.10)
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one gets

α =
1
2
, ν =

1
2
, η = 0 (3.11)

The coefficientsα , η andν define the behavior of the specific heat,C(θ), of the correlation length,
ξ (θ), and of the correlation function at zero momentum,G(k→ 0)

C(θ) ≈

∣

∣

∣

∣

1−
θ
θc

∣

∣

∣

∣

−α
=

∣

∣

∣

∣

1−
θ
θc

∣

∣

∣

∣

−1/2

ξ (θ) ≈

∣

∣

∣

∣

1−
θ
θc

∣

∣

∣

∣

−ν
=

∣

∣

∣

∣

1−
θ
θc

∣

∣

∣

∣

−1/2

(3.12)

Gαβ (k→ 0) ≈ k−2+η = k−2 (3.13)

In 1990 when we got these results we discovered a paper by Wolff [21] showing that the two-
dimensional Gross-Neveu (GN) model has exactly the same phase structure found by us [16]. This
was really interesting in view of the many similarities of the GN model with QCD. This convinced
us that, at least qualitatively, the approximations done inour calculations did not destroy the main
properties of QCD. Also the phase diagram with a tricriticalpoint occurs in many physical systems.
For instance, in the vapor-liquid transition. However, in this case the diagram usually plotted is in
the variables (density, pressure) or (volume, pressure). What happens is that the degenerate minima
of the first order line correspond to different densities andthe lineLI splits into two different lines.
This is shown in the (density, pressure) plane in Fig. 5 (see,for instance, ref. [22]).

Figure 5: The phase diagram for ladder QCD (the same as for the vapor-liquid or for the GN model) in the
plane(1/n, p).

4. Order of the transition at zero density vs. the strange quark mass

In 1984 Pisarski and Wilczek [23] started to investigate theorder of the transition at zero
density. In particular they investigated the dependence ofthe order on the number of flavors. They
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used an effective theory of QCD based on the introduction of light fields transforming as the chiral
condensate:

Φ ≈ ψ̄LψR (4.1)

When close to the transition, this is a light field since the condensate, and therefore the mass term
for Φ, vanishes atT = Tc. The transformation properties ofΦ under the groupG = U(1)A ⊗

SU(N)L ⊗SU(N)R are

Φ → eiαULΦUR, UL ∈ SU(N)L , UR ∈ SU(N)R (4.2)

It is convenient to parameterizeΦ in the form

Φ = φU, U ∈ SU(N) (4.3)

In this way we separate theN2 − 1 Goldstone fields from the condensateφ . The effective G-
invariant lagrangian is [23]

L =
1
2

tr(∂µΦ†∂ µΦ)−
1
2

m2tr(Φ†Φ)−g1
(

tr (Φ†Φ)
)2

−g2tr (Φ†Φ)2 (4.4)

To this G-invariant part a piece breakingU(1)A → ZA(N) is added

L
′ = c

(

detΦ+detΦ†) (4.5)

At zero temperature the symmetry breaking toSU(N)L+R is enforced through the non vanishing
expectation value

〈Φ〉 = Φ0 ·1 (4.6)

In [23] theβ -function of this effective theory has been studied and it was found that forN ≥ 3 the
transition to the symmetric phase is first-order. The proof goes through the use of theε-expansion
in 4− ε dimensions and the analytic continuation toε = 1. In this way one takes into account that,
due to the thermal cutoff of the time-like modes, the theory is effectively three dimensional. About
this point notice that atd = 3 the dimensions of the scalar fields are[Φ] = 1/2. As a consequence
the sixth order termφ6 is marginal and it should be included into the effective expansion when the
coefficients ofΦ2 andΦ4 are small, that is around the tricritical point. At zero density and close
to the critical pointTc the effective potential for the condensateφ can be taken of of the form (see
eqs. 4.4 and 4.5)

M2

2
φ2 +

λ
4

φ4 (4.7)

with the coefficientsM2 andλ depending on the parameter of the effective lagrangianm2, g1, g2, c
andN. The critical temperature can then determined as a functionof the parameters by the equation

M(Tc) = 0 (4.8)

This result was also confirmed by lattice calculations, as shown in Table 1.
Following ref. [28] we may draw the phase diagram in the spaceof the quark masses as in Fig.

6. By looking at this diagram an interesting question arises: how do we go from a second order to
a first order phase transition by varying the strange quark mass? An answer to this question was
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Date Authors N = 2 N = 3 N = 4 N = 6 Lattice size

1987 Gottlieb et al. [24] crossover 1st (8,10)3×4
1990 Gottlieb et al. [25] crossover 123×8
1990 Fukugita et al. [26] crossover 1st 123×4
1990 Kogut et al. [27] crossover 1st? 1st 123×4
1990 Brown et al. [28] crossover 1st 163×4
1992 Bernard et al. [29] crossover 123×6
1994 Zhu [30] crossover (16,32)3 ×8
1995 Iwasaki et al. [31] crossover 1st 1st 123(6,18),182 ×24× (6,18)

Table 1: A compilation of the results obtained in lattice calculations of the order of the chiral transition at
µ = 0 andT 6= 0.

Figure 6: Solid circles is where the first order transition is seen, whereas crossover transitions correspond
to the solid squares. The dashed circle indicates the physical point.

given in refs. [32, 33]. The argument is the following: adding a massive quark does not change the
effective action since the light fields are unchanged. Therefore, when close to the critical point, the
effective potential is still of the form given in eq. 4.7. However the massive quark renormalizes
the couplings. The resulting effect is that a variation ofM2 will change the critical temperature.
Howeverλ could change in such a way to go through zero and become negative. If this is the case
we know that we have to add aφ6 term in the potential (remember that the effective theory isthree
dimensional and that such an operator is marginal). In this way we may go smoothly from a second
order to a first order transition.

5. Universality at non zero density

At the end of the 90’s there was a big revival of the studies of the phase diagram of QCD
prompted by the analysis made at very large density and zero temperature [2], showing the forma-
tion of a diquark condensate〈ψψ〉 and the corresponding breaking of the color symmetry. After
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Figure 7: Dashed lines represent second order phase transitions, whereas the solid line corresponds to a first
order one. The solid circle indicates the tricritical point.

that Berges and Rajagopal [34] studied the coexistence of the chiral and of the diquark condensates
in a NJL model. The phase diagram found by these authors is shown in Fig. 7, and it shows the
presence of the tricritical point. The authors justified thepresence of the tricritical point by using
an argument very close to the one used in refs. [32, 33] in the case of the strange quark that we
have discussed in the previous section. The idea is that at zero quark mass the theory belongs to the
O(4) universality class (IsingZ2 for mq 6= 0) and this is not changed at finite density as shown in
ref. [35]. However the renormalization of the coefficients in the effective action due to the presence
of the chemical potential might change the coefficient of thequartic term forcing the introduction
of a sixth order term in the potential. Again, the 6th order term gives rise to a tricritical point in the
phase diagram. Also, recalling that theφ6 operator is marginal, one expects, at most, logarithmic
corrections to the critical exponents evaluated before.

After the previous paper many authors reconsidered the problem of QCD at finite density and
temperature using many different approaches. We will give here a brief list of papers delaing with
the problem. In 1998 Halasz et al. [36] considered a random matrix model, for the two-flavor case,
in the space(µ ,T,m) finding results consistent the universality arguments. Their results are shown
in Fig. 8.

In ref. [37] the chiral phase transition has been examined both in a linearσ -model and in a
NJL model. The two cases are illustrated in Fig. 9. Once againthe results agree very well with the
universality arguments.

Another different approach was considered in ref. [38]. Thecalculation was done within the
context of the statistical boostrap principle, and again itagrees with the universality hypothesis, see
Fig. 10. It was also found that the critical chemical potential is non zero for a large range of values
of the bag constantB (B1/4 < 282MeV).

As a last example we report a recent calculation made by Hattaand Ikeda [39] using again
ladder QCD with the help of the CJT potential as in refs. [16, 17]. This calculation takes also into
account quark masses and it shows the dependence of the critical end point with this variable, as

12
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Figure 8: We show the first order lines as curves at constant quark mass,m. At m= 0 the second order line
is shown. Form 6= 0 the first order line ends into a critical end point.

Figure 9: The two panels illustrate the phase diagram for theσ -model (left panel) and for the NJL model
(right panel). The middle curves are the critical lines whereas the outer lines are the spinodal lines.

shown in Fig. 11.

A comparison of the locations of the critical end point evaluated in different models can be
found in a recent review by Stephanov [5]. This comparison isparticularly interesting since it
shows that, although different models agree qualitativelywell, from a quantitative point of view
they are quite different. For instance, at the critical end point, the critical value of the chemical
potential varies between roughly 300MeV up to about 1000MeV, whereas the critical value of the
temperature goes between 40 and 170MeV. Clearly in order to have a quantitative improvement
one would need a first principles calculation.

6. Lattice calculations

As noticed in the previous section one would really need to have the possibility of testing on the
lattice the phase diagram of QCD. However the usual samplingmethod, based on a positive definite
measure in the euclidean path integral, does not work in presence of a real chemical potential, since
the fermionic determinant is then complex. In fact, let us define euclidean variables through the
following substitutions:

x0 →−ix4
E, xi → xi

E, γ0 → γ4
E, γ i →−iγ i

E (6.1)
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Figure 10: The(µ ,T) phase diagram from the statistical boostrap model.B is the value of the bag constant.
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Figure 11: Quark masses are evaluated at the momentum scale 1GeV. The solid and dotted lines correspond
to first order and second order phase transitions respectively. The solid and open circles denotes the tricritical
and the critical end points.

The euclidean Dirac operator in the presence of a chemical potential is

D(µ) = γµ
E Dµ

E + µγ4
E, Dµ

E = ∂ µ
E + iAµ

E (6.2)

At µ = 0 the eigenvalues ofD(µ) are pure imaginary and also, if|λ 〉 is an eigenvector ofD(0),
thenγ5|λ 〉 belongs to the eigenvalue−λ5, as it follows from

D(0)† = −D(0), γ5D(0)γ5 = −D(0) (6.3)

Therefore
det[D(0)] = ∏

λ
(λ )(−λ ) > 0 (6.4)
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At µ 6= 0 this argument does not hold and we lack the positivity property. However, if one considers
the chemical potential associated to the isospin, since this is related to the conserved currentτ3, the
positivity can be proved by usingτ1 in conjunction with the hermitian conjugation.

Recently there have been numerous different attempts to improve the lattice calculations at
µ 6= 0:

• Rewighting method (see, for instance [40, 41, 42]).

• Taylor expansion for smallµ (see, for instance [43], [44], [45])

• Imaginary chemical potential (see, for example [46], [47] [48], [49], [50])

6.1 Reweighting

The reweighting technique (for a review see ref. [51])is based on the following identity for the
partition function

∫

DUdet[D(0)]
det[D(µ)]

det[D(0)]
e−Sg(U) =

〈

det[D(µ)]

det[D(0)]

〉

µ=0
(6.5)

Since the integration measure is taken atµ = 0 it is positive definite. However in the numer-

Figure 12: The most recent determination with the reweighting procedure is given in ref. [42]. The errors
are due to the reweighting procedure and on the error of the scale determination atT = 0. The values of the
critical temperature and chemical potential areT = 162±2 MeV, µ = 360±40MeV.

ical calculation problems arise. The ratio of the two determinants oscillates and there are large
cancellations. Also, since the reweighting corresponds tothe ratio of two partition functions with
different actions, it decays exponentially according to the difference of the free energies,∆F. This
is proportional to the volume and therefore the statistics required for a given accuracy increases
with the volume. An improvement of this technique is the so called "multiparameter reweighting"
which is a generalization of the previous method [40]. The idea is to reweight also in the lattice
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gauge coupling, writing

Z =

〈

e−Sg(β)det[D(µ)]

e−Sg(β0)det[D(0)]

〉

µ=0,β0

(6.6)

The second reweighting parameter can be used to allow the statistical ensemble to fluctuate between
the phases and to avoid that the ensemble goes away from criticality. One of the most recent
calculations using this technique was done in ref. [42] and the result is shown in Fig. 12

6.2 Taylor expansion
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Figure 13: A comparison of the critical line in different simulations,FP [48], FK [41], All [43], EL [47].
The box is the position of the critical end point evaluated byFodor and Katz in [41].

This method makes use of the multiparameter reweighting andat the same time of a Taylor
expansion in the chemical potential. Although this method is not useful for determining the critical
end point, it is of interest in the heavy ion physics where values ofµ of a few tenMeV are important.
What one does is simply to expand in a Taylor series ofµ/T the reweighting factor. In particular
this method can be used to evaluate the behavior of the critical line at smallµ/T. This method has
been used in ref. [43] for the two-flavor case. The results areshown in Fig. 13.

6.3 Imaginary chemical potential

If µ is pure imaginary the fermion determinant is positive and numerical simulations can be
done easily as for the caseµ = 0. Using the fact that the observables are analytic functions of µ
except that on the critical line, one computes expectation values at imaginaryµ and then one fits
them by a truncated Taylor expansion [46, 47]. Some of these results are given in Fig. 13.

7. Isospin chemical potential

To end this review we will report also some result obtained inpresence of an isospin chemical
potential,µI . The case ofµI 6= 0 is, in principle, interesting for the heavy ion physics. Itis also
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interesting since forµ = 0 andµI 6= 0 the fermionic determinant is positive [52, 53]. The problem
(µ andµI 6= 0) has been studied using effective lagrangians [54, 55], random matrices [56], NJL
model [57, 58] and ladder-QCD [59]. The most interesting effect in these studies appears to be the
splitting of the critical line and of the critical end point.In fact, this effect could bring down the
end critical point to a region more accessible to heavy ion experiments. We show in Fig. 14 the
result in the NJL model [57]. The result is qualitatively compatible with an analogous calculation
made in the ladder-QCD model [59]. However a too strong mixing of the up and down flavors
could destroy this interesting result, as shown in ref. [60].
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Figure 14: The phase diagram for the NJL model as studied in ref. [57]. The left panel shows the case
µI = 0, whereas in the right panelµI = 30MeV.
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Figure 15: The phase diagram for the ladder-QCD model as studied in ref.[59].

8. Conclusions

As we have shown there has been a lot of activities and resultsin our understanding of the
phase diagram of QCD. However most of the progress is still ata very qualitative level. We would
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like to be able to locate the critical point with a good accuracy, but for that, a breakthrough is real
necessary. This could come by devising some clever technique in lattice calculations, or, may be, a
new analytical method.
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