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1. Introduction

In order to understand the properties of ordinary mattarytves and mesons) it is necessary to
understand the properties of the ground state of QCD. Then@gsto test the physical properties
of a system is to vary its defining conditions in order to téstéactions. To do that in QCD we
have to consider a system different from the vacuum but serfily simple in order to be able to
study it. Some possibilities are to study extremely densiemar matter at very high temperature
as at the beginning of our universe. A bonus in studying tbempl state of these particular systems
is that, due to the fundamental property of asymptotic foeedQCD simplifies a lot. In the case
of very high temperature one expects QCD to behave as a feeeytldescribing a non interacting
gas of quarks and gluons. A similar conclusion would be tige at high density except that
having to do with fermions we have to keep into account théusian principle. As a consequence
a very degenerate Fermi sphere is formed and, if an arbisttrgctive interaction is present, we
expect that the phenomenon of color superconductivitystgkace [1, 2]. This is what we expect
in QCD, since at very high density the theory can be desciibéztms of a single gluon exchange
and this provides an attraction in the antisymmetric digusate. From this we get informations
about two asymptotic regions of the phase diagram of QCDervéniableq i, T), wherep is the
baryon chemical potential. The two regions are respegtiiel~ 0,T — o) and(u — o, T ~ 0).
However we would like also to know what happens in the intefiate region and in particular we
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would like to determine the order of the phase transitioosfthe hadronic phase to the quark-
gluon plasma and to the color superconducting phase. Ircthitext the possibility arises that
going from the hadronic to the gluon-quark plasma phasee tisea cross-over for small chemical
potentials and a first order for higher values.ofin this case, the end point of the first-order line
is called the "critical point" of QCD. The study of this inteediate region is quite complicated
since perturbation theory cannot be applied to QCD and duntlore at finite chemical potential
the usual lattice approach fails. In this talk | will discuke historical path through which the idea
of a critical point came about and some of the attempts oftilegdt. Therefore | will not discuss
the physics associated to the critical point and how thistpzan be detected experimentally. Both
these topics are treated by other speakers in this confesrttmany nice reviews about the subject
exist in the literature, see for example [3, 4, 5, 6, 7].

2. Order parameters

The quark gluon plasma phase can be thought of as a deconfirese pnd therefore one
would like to define an order parameter to distinguish betwihés and the confined phase (the
hadronic one). Such an order parameter can be easily defimed theory without quarks (or,
equivalently formq — ). This is the Polyakov loop [8] defined as

L(®) =trQ(®), QX) = Pexp(i /O ’ dt%(i,t)) @.1)

with B = 1/kT andAg the time component of the gluon field. It turns out that theeexation value
of the loop is asymptotically given by

(L) ~ lim e V(") (2.2)

r—oo

with V (r) the potential between a static quark-antiquark pair attawigr. Therefore the confined
and the deconfined phase are distinguished by the val(le of

Confined phase :(L) =0
Deconfined phase (L) # 0 (2.3)

From a symmetry point of vievl, characterizes the breaking of the center of the color gra(y),
in the case oN; colors. From asymptotic freedom we expect that at someatitemperaturd,

(L)=0, T<Te, (L)#0, T>T; (2.4)

For finite quark masses we expé&tfr) to remain finite for — . In fact the string of the color
flux between the two color charges is expected to break wheepdtential energy equals the mass
of the lowest hadronic stat®),. Therefore(L) does not vanish in the hadronic phase but rather
goes exponentially to zero fdl, — oo

(L) ~ g PMn (2.5)

When quarks are present one can define another order parathetehiral condensaté ),
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Figure1: The Polyakov looop and the chiral condensate suscepghiiit the case of two flavor QCD. This
calculation has been made with a quark mass about four tilggsthan the one needed for obtaining the
physical pion mass [9].

characterizing the breaking of the flavor symmetry (foranse, for three massless flavors the
chiral symmetry would b&8U(3). ® SU(3)r®@U (1)y). In this case we expect

() =0 for T — o, (PY)#0 for T—0 (2.6)

Of course, sincen, # 0, this order parameter never vanishes but it will have gpstariation, or a
crossover, close to the transition. The susceptibilitieh@®se two order parameters

XL (L% — (L)% Xm=~ dé‘ﬁ? (2.7)
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have been evaluated on the lattice [9] in the case of two ffavdihe results are shown in Fig.
1. The figure shows very clearly that the deconfinement andhal transition coincide at zero
baryon density.

Our final conclusion is that the phase structure is charaet:by

T < T confined phase :(L) ~0, (Yy)+#0
T > T, deconfined phase {L) #0, (YY) ~0 (2.8)

Given this result, in the following we will concentrate oretbhiral transition which is easier to
deal with.

3. First attemptsto evaluate the phase diagram of QCD

One of the first attempts to evaluate the T) phase diagram of QCD was done in ref. [10].
The authors evaluated the gap equation for the chiral caadein the approximation of one gluon-
exchange. However the paper did not contain a discussiaut &t nature of the chiral transition.
Other attempts [11, 12] were done using the Coulomb gaugeeglécting the retardation effects
in the gluon propagator. This approach is simple since iery ¢lose to a non-relativistic treatment
and it allows to vary the static potential according to th&euagptions for the gluon exchange. For
instance, the static potential has been chosen&suaction, Coulomb type or confining. In all
these cases these authors have found a second order drairsitie pland,T).

A completely different approach was developed in refs. 143, The authors derived effective
lagrangians for different gauge groups and a single flavopakticular they found that fa¥; = 2
the line of transition is second order, whereasNge= 3 it is first order.

The paper in ref. [15] started the analysis of the problem simgia Nambu-Jona Lasinio
(NJL) model. The case studied wids= 2 andN, = 3. The idea is to simulate the gluon interaction
through an effective four-fermi coupling. Although thesano reason to expect quantitative results
close to real QCD, one hopes that universal effects can lowesed. In ref. [15] the interaction
lagrangian used is

A = Lsym+ Lyet
Leym= 301 [(PW)* + (PiysTY)? + (Piys)® + (PT
2 pt

1] )?]
Laer= 30 [(PW)? + (PiysTY)? — (Piys)® — (

1]
W)?] (3.1)

where_ Zyet is the t'Hooft determinant breaking the axial symmétr{l), written for Nt = 2. In
general

Foer = 5G[deqF(1+)0} +he] (3.2)

For simplicity the authors did the choigg = g» = g. Therefore the model depends on 3 parame-
ters, the mass of the quarnks the couplingg and the cutoff\ defining the model. These parameters
can be determined at zero temperature and density by usinghysical values of,, f; and a
reasonable value for the condensate. The results, in the flau), are shown in Fig. 2 for two
different choices of the parametersm:= 5.5 MeV, g = 5.074x 10°% MeV—2, A = 631 MeV; II:
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Figure 2: The continuous lines and the dashed lines correspond teofiler and to second-order or
crossover transitions. The label | and Il refer to differembices of the parameters, see the text.

m=5.0MeV, g=2.337x 10°° MeV~2, A = 925MeV. The corresponding values of the conden-

sates are in the first cagg/y) = (—247)° MeV® and in the second on@iy) = (—359)% MeVe.

In the figure we see the occurrence of a critical end point evktes first order transition line ends.
Refs. [16, 17] developed an approximation scheme to QCagté&down as ladder QCD) by

using the Cornwall, Jackiw and Tomboulis (CJT) effectivéac[18]. The calculation was done

at two loops and it is equivalent to sum up the ladder diagraitis gluon exchanged. A further

approximation was to use an ansatz for the self-energy di/fiee

A
2(p, T =x(T,U)——— 3.3
(P, T, 1) = X( ,u)/\2+p2 (3.3)
in order to provide an asymptotic behavior consistent whith aperator product expansion is
a mass scale parameter gn(, i) is determined by minimization of the CJT effective potentia

The fermionic condensate is relatedytor, 1) by the relation

3

(B0)1 =3 X(T0) (3.4
At T=pu=0,9(T,u) is the QCD gauge coupling. The dependencg oh T andu was chosen
in a way consistent with asymptotic freedom [16]. A= u = 0 the parameters were chosen to
be A = 282 MeV, as = 0.902. In this way(@y), renormalized at the scale, turns out to be
(—197 MeV)3. The results of this analysis are shown in Fig. 3. The lingsotkl byL, and
L;, correspond to first-order and second-order transitionthéee papers the massless quark case
was considered). These two lines are separated by theateticl point (a tricritical point in this
case). The dashed lineis the continuation of the points where the second derigatanishes at
the minimum, whereas the linkis the location of the points where the minima of the potegiia
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Figure 3: The continuous linek; andL,, correspond to the first and second order transitions ragphct
The dot is the tricritical point, designed g%, T;). The dashed lineg andd (spinodal lines) are explained
in the text.

from three to one (see also Fig. 4). These two lines are cafiethdal lines. The regions between
y andL, andL, andd correspond to metastable states. We see that the qualitatults are very
similar to the ones obtained in [15] for a completely diffgrenodel. Since the tricritical point is
where second order and first order transitions meet togathercan perform a Ginzburg-Landau
expansion of the effective potential. This was done in [B3].performing the expansion up td'6
order in the condensajpeone gets

V(X,T, 1) =V(0,T, ) +a(T, u) x>+ aa(T, ) x* +a(T, 1) x° (3.5)

The coefficients (x, T) have been evaluated in [19]. From this expression one edailyes the
phase diagram in the plarie;/as,a4/as). In fact, it turns out thasg is a positive definite quantity
in the region around the critical point. The resulting phdisgram is illustrated in Fig. 4 (see ref.
[20]). The phase diagram of Fig. 3 is obtained from this onenayping the planéay/as,a4/as)
into the plane(u, T), at least in the neighborhood of the tricritical point. Theeend order line
corresponds ta, = 0 andag > 0, whereas the tricritical point is locatedat= a4 = 0. We see
clearly from Fig. 4 the presence of the metastable regiogsudihg this approach it is possible to
evaluate the critical exponents around the tricriticahpain fact, when close to it we can write
H— He

C

_ TC

Te

T .
g(T,u) ~ar +aiy , 1=24 (3.6)
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Figure 4: The phase diagram arising form the Ginzburg-Landau exparddithe effective potential. The
two dashed lines correspond to the dashed linesd & of the previous figure. In particular, the line
a; =0, a4 < 0 corresponds to the ling The shape of the effective potential in the various regissiown
in the figure.

Let us introduce a quark mass term which, in this variabkepraportional to the fielg, say
Vim= —hx (3.7
Then the minimum condition becomes
h=2apx +4ayx°> + 6agx® (3.8)

and denoting by eitheru or T one gets [19]

0 1/4 1
<X>mq:0,6~>ec ~ 1—5(; —)B:Z
1
(X)mg—0.6=6, ~ my>— &= .
1
o ~|i-g| —vet (3.9)
omg my=0,6—6; 6.

wherea, B andy are the usual critical exponents. Using these relationgtandcaling relations
for a three-dimensional system (since the finite tempegatutoff the time-like modes):

_>5-n

1%
a :2_3‘/) B = E(l—'—r’)) y= (2_0)‘/, 0= l+f7

(3.10)
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one gets
1 1
== == = A1
> V=5 N=0 (3.11)
The coefficientsr, n andv define the behavior of the specific he@(f), of the correlation length,
£(0), and of the correlation function at zero momentuik — 0)

9 —-a 6 —1/2
~|1-— =|1-—
c(6) ' . ‘ .
9 -V 6 —1/2
c c
Gap(k— 0) =k 2" = k2 (3.13)

In 1990 when we got these results we discovered a paper byf J2&lf showing that the two-
dimensional Gross-Neveu (GN) model has exactly the samsepdteucture found by us [16]. This
was really interesting in view of the many similarities o&t®N model with QCD. This convinced
us that, at least qualitatively, the approximations donauincalculations did not destroy the main
properties of QCD. Also the phase diagram with a tricritjgailht occurs in many physical systems.
For instance, in the vapor-liquid transition. However,histcase the diagram usually plotted is in
the variables (density, pressure) or (volume, pressuréatWappens is that the degenerate minima
of the first order line correspond to different densities #adlineL, splits into two different lines.
This is shown in the (density, pressure) plane in Fig. 5 (®eenstance, ref. [22]).
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Figure5: The phase diagram for ladder QCD (the same as for the vagadlor for the GN model) in the
plane(1/n, p).
4. Order of thetransition at zero density vs. the strange quark mass

In 1984 Pisarski and Wilczek [23] started to investigate dihder of the transition at zero
density. In particular they investigated the dependendbeobrder on the number of flavors. They
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used an effective theory of QCD based on the introductioigbf fields transforming as the chiral
condensate:

O~ PLyYRr (4.1)

When close to the transition, this is a light field since thedmmsate, and therefore the mass term
for ®, vanishes all = T.. The transformation properties @ under the groupc = U (1)a ®
SU(N)L ® SU(N)g are

® — €9U ®UR, UL € SU(N)_, Ur e SU(N)r (4.2)
It is convenient to parameterizein the form
®=¢@U, UcSUN) (4.3)

In this way we separate thd? — 1 Goldstone fields from the condensape The effective G-
invariant lagrangian is [23]

1 1
& = St (3, @104 D) — Snftr (BTD) — gy (tr (D7) ” — gt (0T D)? (4.4)
To this G-invariant part a piece breakibg1)a — Za(N) is added
£ = c(det® + detd) (4.5)

At zero temperature the symmetry breakingSld(N),_,r is enforced through the non vanishing
expectation value

In [23] the B-function of this effective theory has been studied and & veaind that folN > 3 the
transition to the symmetric phase is first-order. The pragsgthrough the use of tleeexpansion
in 4— £ dimensions and the analytic continuatiorete: 1. In this way one takes into account that,
due to the thermal cutoff of the time-like modes, the theermgffectively three dimensional. About
this point notice that al = 3 the dimensions of the scalar fields &8 = 1/2. As a consequence
the sixth order terng® is marginal and it should be included into the effective egian when the
coefficients of®? and ®* are small, that is around the tricritical point. At zero dgnand close
to the critical pointT, the effective potential for the condensgiean be taken of of the form (see
egs. 4.4 and 4.5) ,

M 5 A 4

7(0 + Z(P 4.7)
with the coefficientsV? andA depending on the parameter of the effective lagrangiarg:, g», ¢
andN. The critical temperature can then determined as a funofitiie parameters by the equation

M(Te) =0 (4.8)

This result was also confirmed by lattice calculations, asvshin Table 1.

Following ref. [28] we may draw the phase diagram in the spditiee quark masses as in Fig.
6. By looking at this diagram an interesting question aribesv do we go from a second order to
a first order phase transition by varying the strange quarksfaAn answer to this question was

10
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Date Authors N=2 |[N=3|N=4|N=6 Lattice size

1987 | Gottlieb et al. [24] | crossover 18t (8,103 x 4

1990 | Gottlieb et al. [25] | crossover 128 %8

1990 | Fukugita et al. [26]| crossover 18t 128 x 4

1990 | Kogutetal. [27] | crossover| 15t? 18t 128 x 4

1990 | Brown etal. [28] | crossover| 1% 16° x 4

1992 | Bernard et al. [29]| crossover 12 % 6

1994 Zhu [30] crossover (16,323 x 8

1995 | Iwasaki et al. [31] | crossover| 1% 1t | 128(6,18),18 x 24 x (6,18)

Table 1: A compilation of the results obtained in lattice calculasmf the order of the chiral transition at
u=0andT #0.
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Figure 6: Solid circles is where the first order transition is seen, nghe crossover transitions correspond
to the solid squares. The dashed circle indicates the pdiysdint.

given in refs. [32, 33]. The argument is the following: adgamassive quark does not change the
effective action since the light fields are unchanged. Tihezewhen close to the critical point, the
effective potential is still of the form given in eq. 4.7. Hever the massive quark renormalizes
the couplings. The resulting effect is that a variatiorMf will change the critical temperature.
HoweverA could change in such a way to go through zero and become wegktihis is the case
we know that we have to addg® term in the potential (remember that the effective theotpiise
dimensional and that such an operator is marginal). In thigwe may go smoothly from a second
order to a first order transition.

5. Universality at non zero density

At the end of the 90’s there was a big revival of the studieshefphase diagram of QCD
prompted by the analysis made at very large density and eerpdrature [2], showing the forma-
tion of a diquark condensateyy) and the corresponding breaking of the color symmetry. After

11
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Figure7: Dashed lines represent second order phase transitionssagihe solid line corresponds to a first
order one. The solid circle indicates the tricritical point

that Berges and Rajagopal [34] studied the coexistenceeafttinal and of the diquark condensates
in a NJL model. The phase diagram found by these authors 8rshoFig. 7, and it shows the
presence of the tricritical point. The authors justified pinesence of the tricritical point by using
an argument very close to the one used in refs. [32, 33] in &ise of the strange quark that we
have discussed in the previous section. The idea is that@tpark mass the theory belongs to the
O(4) universality class (Ising, for my # 0) and this is not changed at finite density as shown in
ref. [35]. However the renormalization of the coefficiemtshie effective action due to the presence
of the chemical potential might change the coefficient ofghartic term forcing the introduction
of a sixth order term in the potential. Again, th& 6rder term gives rise to a tricritical point in the
phase diagram. Also, recalling that tipe operator is marginal, one expects, at most, logarithmic
corrections to the critical exponents evaluated before.

After the previous paper many authors reconsidered thdgarobf QCD at finite density and
temperature using many different approaches. We will gere la brief list of papers delaing with
the problem. In 1998 Halasz et al. [36] considered a randoimixmaodel, for the two-flavor case,
in the spacéu, T,m) finding results consistent the universality arguments.irfiesults are shown
in Fig. 8.

In ref. [37] the chiral phase transition has been examindHd voa linearo-model and in a
NJL model. The two cases are illustrated in Fig. 9. Once atp@imesults agree very well with the
universality arguments.

Another different approach was considered in ref. [38]. Talkeulation was done within the
context of the statistical boostrap principle, and agafigiees with the universality hypothesis, see
Fig. 10. It was also found that the critical chemical potais non zero for a large range of values
of the bag constarB (BY/* < 282MeV).

As a last example we report a recent calculation made by Hatdalkeda [39] using again
ladder QCD with the help of the CJT potential as in refs. [18, This calculation takes also into
account quark masses and it shows the dependence of tlwalogitid point with this variable, as

12
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Figure 9: The two panels illustrate the phase diagram fordhmodel (left panel) and for the NJL model
(right panel). The middle curves are the critical lines véaarthe outer lines are the spinodal lines.

shown in Fig. 11.

A comparison of the locations of the critical end point eesdd in different models can be
found in a recent review by Stephanov [5]. This comparisopadicularly interesting since it
shows that, although different models agree qualitativedyl, from a quantitative point of view
they are quite different. For instance, at the critical enihyy the critical value of the chemical
potential varies between roughly 38eV up to about 1000/eV, whereas the critical value of the
temperature goes between 40 and MWé&V. Clearly in order to have a quantitative improvement
one would need a first principles calculation.

6. Lattice calculations

As noticed in the previous section one would really need e lae possibility of testing on the
lattice the phase diagram of QCD. However the usual sampiietpod, based on a positive definite
measure in the euclidean path integral, does not work irepresof a real chemical potential, since
the fermionic determinant is then complex. In fact, let uSrdeeuclidean variables through the
following substitutions:

Xo— —ixg, X = Xg, po— W, ¥ — -k (6.1)

13
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and the critical end points.

The euclidean Dirac operator in the presence of a chemi¢ahpal is
D(k) = EDE + 1, Dg = 0F +IAE (6.2)

At u = 0 the eigenvalues dD(u) are pure imaginary and also,|) is an eigenvector ob(0),
thenys|A) belongs to the eigenvalueAs, as it follows from

D(0)" = —D(0), 1D(0)ys = —D(0) (6.3)

Therefore

defD(0)] = [1(A)(~A) > 0 (6.4)
A

14
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At u # 0 this argument does not hold and we lack the positivity prigpe&lowever, if one considers
the chemical potential associated to the isospin, sinsédhelated to the conserved curregitthe
positivity can be proved by using in conjunction with the hermitian conjugation.

Recently there have been numerous different attempts toowraphe lattice calculations at
p#0:

e Rewighting method (see, for instance [40, 41, 42]).
e Taylor expansion for smaljl (see, for instance [43], [44], [45])
e Imaginary chemical potential (see, for example [46], [44]] [49], [50])

6.1 Reweighting

The reweighting technique (for a review see ref. [51])isdobsn the following identity for the
partition function

detD(u)] ) _ /detD(u)]
/DUdet[D(O)]me L) = <m>uo (6.5)

Since the integration measure is takenuat O it is positive definite. However in the numer-

165 ' T T | UL | UL | LI | T L

E quark—gluon plasma E

_’ -

— 164 crossover -
> - -
3 ¥ .
< 163 — ]
[ | |C hadronic phase i
162 [ -

B 1t order transition¢-

B 1 11 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 I_

o

100 200 300 400
pp (MeV)

Figure 12: The most recent determination with the reweighting procedsigiven in ref. [42]. The errors
are due to the reweighting procedure and on the error of tle sletermination &f = 0. The values of the
critical temperature and chemical potential &re- 162+ 2 MeV, u = 360+ 40MeV.

ical calculation problems arise. The ratio of the two detaamts oscillates and there are large
cancellations. Also, since the reweighting correspondldaatio of two partition functions with
different actions, it decays exponentially according ®difference of the free energies-. This

is proportional to the volume and therefore the statistaxguired for a given accuracy increases
with the volume. An improvement of this technique is the seeda'multiparameter reweighting”
which is a generalization of the previous method [40]. Theaids to reweight also in the lattice

15
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gauge coupling, writing

_ [/ e 5P detD(p)]
2= <e59(Bo)det[D(O)] >H_0 & (6.6)

The second reweighting parameter can be used to allow ttististe ensemble to fluctuate between
the phases and to avoid that the ensemble goes away fromalityti One of the most recent
calculations using this technique was done in ref. [42] &edrésult is shown in Fig. 12

6.2 Taylor expan<i~

s
z — N2, [FP) z
180 5o N=2+1, [FK] :
175 77 — N=2, [Al] 5
T N=4, [EL] j
o 5
=165 NN g
F160" *%k%.%g*
155- .
150- .
r 1 1 1 1 l 1 1 1 1 l 1 1 1 1 l 1 1 1 1 l 1 1:

14 200 400 . 600 800

Hg/MeV

Figure 13: A comparison of the critical line in different simulatiorfsP [48], FK [41], All [43], EL [47].
The box is the position of the critical end point evaluatedrbgor and Katz in [41].

This method makes use of the multiparameter reweightingaartde same time of a Taylor
expansion in the chemical potential. Although this mettsoalat useful for determining the critical
end point, itis of interest in the heavy ion physics wheregalofu of a few tenMeV are important.
What one does is simply to expand in a Taylor serieg OF the reweighting factor. In particular
this method can be used to evaluate the behavior of theatriite at smallu/T. This method has
been used in ref. [43] for the two-flavor case. The resultshosvn in Fig. 13.

6.3 Imaginary chemical potential

If uis pure imaginary the fermion determinant is positive anthetical simulations can be
done easily as for the cage= 0. Using the fact that the observables are analytic funstifru
except that on the critical line, one computes expectatanes at imaginary and then one fits
them by a truncated Taylor expansion [46, 47]. Some of thesdts are given in Fig. 13.

7. Isospin chemical potential

To end this review we will report also some result obtainegresence of an isospin chemical
potential, 1. The case oy # 0 is, in principle, interesting for the heavy ion physicsislalso
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interesting since fopr = 0 andyy # 0 the fermionic determinant is positive [52, 53]. The proble
(u and; # 0) has been studied using effective lagrangians [54, 58Ham matrices [56], NJL
model [57, 58] and ladder-QCD [59]. The most interestingeffn these studies appears to be the
splitting of the critical line and of the critical end poinitn fact, this effect could bring down the
end critical point to a region more accessible to heavy igregrments. We show in Fig. 14 the
result in the NJL model [57]. The result is qualitatively qoatible with an analogous calculation
made in the ladder-QCD model [59]. However a too strong ngixaf the up and down flavors
could destroy this interesting result, as shown in ref. [60]

T (MeV) pr=0 T (MeV | pr = 30 MeV
150 T .. 150
0 aw, o Gaw, ) e
\ \<A
100 200 300 400 100 200 300 400
pe (MeV) pp (MeV)

Figure 14: The phase diagram for the NJL model as studied in ref. [57]e [Eft panel shows the case
= 0, whereas in the right pang] = 30 MeV.

T(MeV) L L DL L DL L L L UL L s

150

100

50

0 50 100 150 200 250 300 350
Mg (MeV)

Figure 15: The phase diagram for the ladder-QCD model as studied if5@f.

8. Conclusions

As we have shown there has been a lot of activities and reisutiar understanding of the
phase diagram of QCD. However most of the progress is stillvatry qualitative level. We would
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like to be able to locate the critical point with a good aceyrdut for that, a breakthrough is real
necessary. This could come by devising some clever tecaiiglattice calculations, or, may be, a
new analytical method.
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