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1. Introduction

In principle, the lattice formulation provides a rigorous framework for the study of the ther-
modynamics of QCD. In practise, however, the lattice regularisation is usually combined with
importance sampling, which cannot be naively applied at nonzero baryon density, where the quark
determinant becomes complex [1].

It has been realised that this problem can be circumvented in the high T , low µ part of the QCD
phase diagram where one can take advantage of physical fluctuations. Interesting physical informa-
tion can be obtained by computing the derivatives with respect to µ at zero chemical potential and
high temperature [2, 3, 4, 5, 6, 7, 8]. Fodor and Katz proposed an improved reweighting affording a
better overlap between simulation and target ensembles, and a first estimate of the critical endpoint
[9, 10, 11, 12]. In refs. [13, 14, 15] the imaginary chemical potential approach was advocated and
exploited in connection with the canonical formalism. In ref. [16] it was proposed that the analytic
continuation from imaginary chemical potential could be practical at high temperature, and the idea
was tested in the infinite coupling limit. In refs. [17] the method was applied successfully to QCD
in 2+1 dimensions. In ref. [18] it was proposed that the critical line itself can be analytically con-
tinued and results for two flavor of staggered fermions were presented. The scaling of the critical
line and thermodynamics of the four fermion models were studied in [19, 20, 21]

The purpose of this note is to review early and new results obtained by use of the imaginary
chemical potential approach: the basic idea, the applications, and the potentiality.

The following Section is a short introduction into lattice QCD and the sign problem; Section 3
discusses the phase diagram in the T,µ 2 plane; Section 4 offers a short summary of the canonical
approach, while Section 5 introduces the three series representations which have been used so
far. Next, a short collection of results from models. The five central Sections are devoted to the
presentations and discussion of results: Sections 7 focuses on the analytic continuation from lattice
data to real chemical potential by use of a Taylor expansion, section 8 shows how to extend the
results towards larger µ / smaller temperatures by using Pade’ approximants. Sections 9 and 10
use phenomenological models extended to entire complex lane to parametrise thermodynamics
in the different phases of QCD, section 11 shows how critical behaviour at imaginary chemical
potential can influence the thermodynamics of the strong interactive Quark Gluon Plasma.

Introductory material and other surveys of results can be found e.g. in refs. [23, 24, 25, 26].

2. The sign problem, and an imaginary µB

Let us remind ourselves how to introduce a chemical potential µ for a conserved charge N̂
in the density matrix ρ̂ in the Grand Canonical formalism, which is the one appropriate for a
relativistic field theory:

ρ̂ = e−(H−µN̂)/T (2.1)

Z (T ,µ) = Trρ̂ =
∫

dφdψe−S(φ ,ψ) (2.2)

The temperature T on a lattice is the same as in the continuum: T = 1/Nt a, Nta being the lattice
extent in the imaginary time direction (while, ideally, the lattice spatial size should be infinite).
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Figure 1: The phase diagram in the T,µ2 plane. Simulations are possible in the µ2 ≤ 0 halfplane, and
results in the physical µ2 ≥ 0 halfplane have to be inferred from the results.

A lattice realisation of a finite density of baryons, instead, poses specific problems: the naive
discretization of the continuum expression µ ψ̄γ0ψ would give an energy ε ∝ µ2

a2 diverging in the
continuum (a → 0) limit. The problem could be cured by introducing appropriate counterterms,
however the analogy between µ and an external field in the 0th (temporal) direction offers a nicer
solution by considering the appropriate lattice conserved current [1]. This amounts to the following
modification of the fermionic part of the Lagrangian for the 0thdirection L0

F :

L0
F(µ) = ψ̄xγ0eµaψx+0̂ − ψ̄x+0̂γ0e−µaψx (2.3)

We then integrate out fermions exactly, by taking advantage of the bilinearity of the fermionic
part of the Lagrangian L = LYM +LF = LYM + ψ̄M(U)ψ :

∫

dUdψdψ̄Z (T,µ , ψ̄ ,ψ ,U) =
∫

dUe−(SYM(U)−log(det M)) (2.4)

When detM > 0 the functional integral can be evaluated with statistical methods, sampling the
configurations according to their importance (SY M(U)− log(det M)). For this to be possible the
would-be-measure (detM) has to be positive.

Consider now the relationship M†(µB) = −M(−µB): this implies that reality is lost when
Reµ 6= 0. Clearly, for real µ , the imaginary part of the determinant cancels out in the statistical
ensemble, and it is even possible to cancel it exactly on a finite number of configurations by con-
sidering the appropriate symmetry transformation [29, 30]; but still one has to face a sign problem,
and it is not clear in which dynamical region this problem becomes significant [31].

Consider instead Reµ = 0 and Imµ 6= 0: in this case M†(µB) =−M(−µB) implies M† =−M∗

and standard lattice simulations using M†M as a weight are possible.
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It has been shown by Roberge and Weiss [27] that Z(iµ/T ) is always periodic 2π/3, for any
physical temperature. At low T strong coupling calculations predict a smooth behaviour, whereas
at high T weak coupling calculations predict discontinuities in the thermodynamics observables at
T = 2π/3(k +1/2).

This scenario for the phase diagram of QCD in the T – iµI plane has been indeed confirmed
by lattice studies [18, 19] and model calculations [28]. It was also found that the Roberge-Weiss
line of discontinuities ends around a critical temperature TRW > Tc.

3. Mapping the phase diagram in the T, complex µ plane to the T,µ2 plane

The Gran Canonical Partition function Z (µ) is an even function of µ , which is real valued
for either real and purely imaginary µ , and complex otherwise.

We can map the complex µ plane onto the complex µ 2 plane, and consider Z (µ2). Note that
because of the symmetries of the partition function this can be done without any loss of generality.

Then, Z is real valued on the real µ 2 axis, complex elsewhere : the situation is analogous to
e.g. the partition function as a function of a magnetic field, which becomes complex as soon as the
external field becomes complex, and the physical domain (real partition function) is associated with
real values of the couplings. The critical behaviour of the system is then dictated by the zeroes of
the partition function (Lee-Yang zeros) in the complex µ 2 plane. The locus of the Lee Yang zeros is
thought to be associated to a general surface of phase separation [32], and phase transition points,
for each value of the temperature, are associated with the Lee-Yang edge building up in the infinite
volume limit, thus defining a curve in the T,µ 2 plane.

This simple reasoning shows that it is very natural to re-think the phase diagram in the T, µ 2

plane, allowing µ2 to take both negative and positive values (Fig. 1). The critical line itself should
be a smooth function T (µ2), making it natural the analytic continuation from positive to negative
µ2 values. The vertical dash line is the Roberge-Weiss discontinuity, ending at TRW , and it is still
not completely clear how it morphs with the chiral transition [33].

Experience with statistical models shows that not only the critical line, but also the critical
exponents are smooth functions of the couplings [34] (aside of course from endpoints, bifurcation
points, etc.). Hence, they can be safely expanded, either via Taylor expansion or a suitable ansatz.
In particular, µ2

c = 0 has no special character: it is just the point where the Lee Yang edge hits the
real axis where T = Tc.

All in all, our task is to simulate the theory in the µ 2 ≤ 0 strip, and to do our best to ’ex-
trapolate’ the results to real values of µ . There are two main possibilities : one is via a canonical
approach, and the other via an analytic continuation.

4. The Canonical Approach

An imaginary chemical potential µ in a sense bridges Canonical and Grand Canonical ensem-
ble:

ZC (N ) =
β
2π

∫ 2π/β

0
dµZG C (iν)e−iβ µN (4.1)
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hence, Z(V,T, iµI) can also be used to reconstruct the canonical partition function Z(V,T,n) at fixed
quark number n [27], i.e. at fixed density:

Z(V,T,n) = Tr

(

(e−
HQCD

T δ (N −n)

)

=
1

2π
Tr

(

e−
HQCD

T

∫ 2π

0
dθeiθ (N−n)

)

=
1

2π

∫ 2π

0
dθe−iθnZ(V,T, iθT ) . (4.2)

As n grows, the factor e−iθn oscillates more and more rapidly and the error in the numerical integra-
tion grows exponentially with n: this makes the application of the method difficult especially at low
temperatures where Z(V,T, iµI) depends very weakly on µI . The method has been applied in QCD
[14] and in the 2–d Hubbard model [13] [15], where Z(V,T,n) has been reconstructed up to n = 6
[15], and more recently again to QCD (see later for some comparison with other approaches) [35,
37, 36]
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Figure 2: The Gross Neveu critical line and its Taylor
approximants: clearly one would need an infinite number
of terms to reproduce the infinite slope of the critical line
at T = 0. Pade’ guarantees a faster converges.

5. Analytic continuation:
Taylor, Fourier, Pade’

In principle, if one were able to de-
termine thermodynamic observables as a
function F(µ) of the imaginary part of
µ with infinite accuracy, standard com-
plex analysis arguments would guarantee
that the result will be valid within the
entire analytic domain. Since F(µ) is
not known a priori, analytic continuation
must rely on some series representation,
or phenomenological insight. In the fol-
lowing of this section, I will discuss Tay-
lor series, Fourier series and Pade’ ap-
proximants, which are ratios of polynomi-
als defined as

P[N,M](µi) =
a0 +a1µi + .....aM µM

i

b0 +b1µi..+bN µN
i

(5.1)

Note that P[0,N] = is the Taylor N-th partial sum.)
Taylor series was the first idea which came to mind: one fits the numerical results to a poly-

nomial, whose coefficients can be interpreted in terms of a Taylor series centred at µ = 0. This
allows an easy contact with the calculations of [2, 3, 4, 5, 6, 7, 8] where the various coefficients are
computed as derivatives of the various observables atµ = 0. A truncated polynomial is of course
an analytic function, which can be evaluated everywhere on the complex plane as a function of the
complex variable say z:

O(µ) = ∑
k

akµk (5.2)
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However, convergence will only be achieved within a circle (the circle of convergence of the Taylor
series). One can make a virtue of this limitation by estimating the position of singularities in the
complex plane from the value of the radius of convergence estimated from the behaviour of the
series itself [38].

We can now ask ourselves, how can we analytically continue beyond the radius of convergence
of the Taylor series. This of course must be possible, because of the general argument recalled
above.

let us remind ourselves that an analytic function is locally representable as a Taylor series. The
convergence disks can be chosen is such a way that they overlap two by two, and cover the analytic
domain. Thus, one way to build the analytic continuation is by connecting all of these convergence
disks. The arcs of the convergence circles which are within the region where f is analytic have a
pure geometric meaning, and by no means are an obstacle to the analytic continuation. Assume
now that the circle of convergence about z = (0,0) has radius unit, i.e. is tangent to the lines which
limit the analytic domain; take now a z value, say z1 = (0,a),1/2 < a < 1 inside the convergence
disk as the origin of a new series expansion, which is explicitly defined by the rearrangement
(z− z0)

n = (z− z1 + z1 − z0)
n As the radius of convergence of the new series will be again one,

this procedure will extend the domain of definition of our original function (the two series define
restrictions of the same function to the intersection between the two disks), and by ’sliding’ the
convergence disk we can cover all the analytic strip.

An alternative parametrisation, advocated in [19, 40, 41] for dealing with the data in hadronic
phase, uses the Fourier Analysis:

O(µI) = ∑
k

akexp(kiµI)O(µ) = ∑
k

akexp(kµ) (5.3)

.
The latest proposal is to use Pade’ Approximants [42, 43] . Pade’ approximants have a time

honored history in statistical mechanics, and we have borrowed these idea to try and improve the
analytic continuation in our context. We have sketched above the standard theoretical argument to
demonstrate the feasibility of analytic continuation beyond the radius of convergence of the Taylor
series, and we will show that the Pade’ series is one practical way to accomplish it.

6. Interlude : Insight from models

We collect here a miscellaneous (and by no means systematic or complete) set of results for
models, which might be useful to keep in mind for further experimentation.

6.1 The Gross-Neveu model

The Gross-Neveu model in three dimensions is interacting, renormalizable and can be chosen
with the same global symmetries as those of QCD which, when spontaneously broken at strong
coupling, produce Goldstone particles and dynamical mass generation. As such, the Gross-Neveu
model (as well as other four fermion models) can provide some guidance to the understanding of
the QCD critical behaviour (see e.g.refs. [49, 50, 51]).

The critical line for the three dimensional GN model was calculated in ref. [52] and reads

1−µ/Σ0 = 2T/Σ0 ln(1+ e−µ/T ) (6.1)
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where Σ0 is the order parameter in the normal phase. Setting µ = 0 in the above equation gives the
critical temperature at zero chemical potential, Tc(µ = 0) = Σ0/2ln 2 ' .72Σ0
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Figure 3: 2nd order critical line in comparison to an-
alytic continuation from imaginary to real µ via power
series expansion around θ = 0. The curves correspond to
2nd, 4th, 10th, 20th, 30th order in θ and reach beyond
the tricritical point B. The series converges above the line
ν = π .From ref.[39]

Expanding now ln(1+e(−x))' ln2−
1/2x + 1/8x2, and eliminating Σ0 in
favour of Tc, we get

(T −1/2Tc)
2 +µ2/(8ln 2) = T 2

c /4 (6.2)

This expression can be cross checked with
different orders of the Taylor expansion:
it is interesting to mention that, even bar-
ring problems connected with the radius
of convergence we cannot expect that the
Taylor expansion describes well the criti-
cal line: note the infinite slope at T=0, and
we believe the Fig. 2 is self explanatory.

A more sophisticated study has been
carried out recently, [39], addressing the
very interesting question of the behaviour

of the analytic continuation past a tricritical point, see Fig. 3: they find that the tricritical point does
not limit the radius of convergence of the critical line, and propose a strategy based on the analysis
of the effective potential for identifying it.

6.2 Random Matrix Theories

As it is well known (see e.g. [66]), there is a remarkable relation between the symmetry
breaking classes of QCD and the classification of chiral Random matrix Ensembles.

For QCD with fermions in the complex representation (i.e. Nc > 2, fundamental fermions)
with pattern of SSB SU(N f )R × SU(N f )L → SU(N f ), the corresponding RMT is chiral unitary,
β = 2 in the Dyson representation. On the lattice, staggered fermions have unusual patterns of
χSB: all real and pseudoreal representations are swapped. However, for complex representations,
the corresponding RMT ensemble remains chiral unitary [66]. The critical line in the T,µ plane
for this ensemble derived in ref. [67]:

(µ2 +T 2)2 + µ2 −T 2 = 0 (6.3)

is thus valid both on the lattice and in the continuum. Expanding it to O(µ 2) we obtain

T 2 = T 2
c −3µ2 (6.4)

and by comparison with the exact result 6.3, we note that this simple expression describes well the
critical line basically till its endpoint. Again, note that the parametrisation is a Jordan curve with in-
finite slope at T = 0.
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Figure 4: Summary plot[20] for the critical line for N f =

2[18], N f = 3 [20], N f = 4 [19] from imaginary chemical
potential calculations.

6.3 One Dimensional QCD

Another amusing example is one di-
mensional QCD , whose free energy as
a function of fugacity can be analytically
computed [68]. In terms of the fugacity
f = e3µ/T Z reads:

Z ( f )= f 2 +1+ f cosh(3m/T )= P[2,2]( f )
(6.5)

We note that the Pade’expansion is exact,
while a Taylor series, again , will not con-
verge outside its radius of convergence.
The model is also an excellent testbed for
the general pattern of complex zeros of
the partition function: the analysis [57] of

such zeros does indeed confirm the general discussion of [55].

7. The critical line at small µ from the Taylor expansion

The first studies of the critical line have indeed found that a simple polynomial approximation
suffices to describe the data, within the current precision. The precision is demonstrated in Fig. 4
[20] where the results on the three flavor model [20] are superimposed to the ones with two[18]
and four flavors[19].

The overall trend is consistent with the transition becoming weaker with increasing the number
of flavor.

Another nice consistence check can be done by exploiting the four flavor model, which was
studied in a greater detail, and it is shown in Figs. 5,6.

In Fig. 5 we see a compilation of results from different methods. In Fig. 6, left the results are
contrasted with a generalised imaginary chemical potential approach [45]. They define

S = SPG +ma∑
n

ψ̄nψn +
1
2 ∑

n

3

∑
i=1

ψ̄nηi(n)
(

Un,iψn+i −U†
n−i,iψn−i

)

+Sτ(x,y) , (7.1)

with

Sτ(x,y) = x
1
2 ∑

n
ψ̄nη0(n)

(

Un,0ψn+0 −U†
n−0,0ψn−0

)

+ y
1
2 ∑

n
ψ̄nη0(n)

(

Un,0ψn+0 +U†
n−0,0ψn−0

)

, (7.2)

where x and y are two independent parameters. The QCD action is recovered by setting x =

cosh(µa) and y = sinh(µa). By moving in the x,y space it is possible to include low tempera-
ture regions within the radius of convergence of the Taylor series. In Fig. 6, right we see the

8
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Figure 5: Comparison among different techniques for the critical line of four flavor QCD I : The analytic
continuation relying on the Taylor expansion cannot be automatically trusted beyond the vertical line. From
Ref. [37]

Figure 6: Results for the critical line from the generalised imaginary chemical potential approach of ref. [45]
compared with those of ref. [19] (left); Comparison between Wilson (solid) and staggered (dash) fermions,
from ref. [46]

comparison between the results for Wilson fermions and those for staggered fermions [46]. Re-
cently, an interesting study with two flavor of Wilson fermions has appeared as well [47]. Results
from different fermion discretions are indeed very important to control the continuum limit, and
these cross checks nicely demonstrate the robustness of the results

However, the critical line estimated by use of a second order Taylor series, in principle cannot
be trusted beyond the radius of convergence of the series itself. We will discuss in the next Section
how to improve the situation by use of Pade’ approximants.
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Figure 7: For dmc(µ)/dµ2 < 0, there is no critical point at all, the dotted line on the right is merely a
crossover., from Ref. [56]

7.1 The Endpoint

A crucial issue remains the determination of the endpoint, expected of a theory with two
plus one flavor. The first estimate was given within the reweithgting method TE = 160±3.5MeV ,
µE = 725 ± 35MeV [10]. Results obtained at imaginary chemical potential and with improved
precisions did show a subtle dependence on the mass values, and on the parameters of the algorithm
[61, 60].

Such technical limitations are not specific of imaginary chemical potential. This makes manda-
tory an extrapolation to physical values of the quark masses, which , in turn, implies a good control
on the continuum limit.

Recently, Forcrand and Philipsen took an alternate approach to the search of the endpoint : they
observed [56] that the existence of the endpoint depends on general features of the critical surface
in the temperature chemical potential and mass plane (Fig.7) . They arrived at the conclusion that,
for the lattice spacing considered here, the curvature of the critical surface is negative, which seems
hardly consistent with the presence of an endpoint.

This behaviour, if confirmed, (and, indeed, the results of ref. [58] support these findings)
would be a strong indication that the behaviour of QCD is indeed much more subtle than that
of the four fermion models with the same global symmetries, which were first used to suggest
the existence of such endpoint in the T,µ plane [59]. Perhaps not surprisingly, given that the
mechanism of chiral symmetry breaking in QCD is associated with long distance forces, as opposed
to the strong local dynamics which is responsible for chiral breaking in four fermions models.

7.2 Chiral Symmetry, confinement, topology

Theoretical issues related with the nature of the critical line can be studied directly at imaginary
chemical potential, without any continuation.

In Ref. [19, 21] we have demonstrated the correlation between chiral condensate and of the
Polyakov loop, and argued that this correlation should be continued at real baryon density: to this
end, we note that if βc(iµI) = βd(iµI) over a finite imaginary chemical potential interval, then the
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function ∆β (iµI) = βc(iµI)− βd(iµI) is simply continued to be zero over the entire analyticity
domain, thus demonstrating the correlation between the chiral and the deconfinement transitions
(βc = βd) also for real values of µ . We refer to e.g refs. [62, 63] for an effective Lagrangian
discussion of this issue.

It is interesting to briefly mention results in the two colour model: in ref [64] it is shown
that Polyakov Loop, chiral condensate are correlated in the high temperature region of the phase
diagram in two colour QCD, as they are in three colour QCD. In addition to this, also the topo-
logical charge (Fig.8) is correlated with the other observables, as it was at µ = 0: all in all, a
finite density of baryons does not change the nature of the transition from the hadron to the quark
gluon plasma phase. The simulations were repeated for the Pisa order parameter in ref. [65].
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Figure 8: Topological susceptibility as a function
of the chemical potential µ [64].

8. Beyond
small µ via Pade’ approximants

In Fig. 9 we present the Pade’ analysis [42]
of data for the critical line of four flavor QCD
(numerical results are from[19] ) Results seem
stable beyond µB = 500MeV (µB/T ' 1), with
the Pade’ analysis in good agreement with Tay-
lor expansion for smaller µ values. At larger µ
the Taylor expansion seems less stable, while the
Pade’ still converges, giving a slope of the criti-
cal line larger than the naive continuation of the
second order Taylor approximations: we underscore that the possibility of analytically continue
the results beyond the radius of convergence of the Taylor series by no means imply that one can
blindly extrapolate a lower Taylor order approximation!

The same bending towards lower µ values is suggested by recent results within the canonical
approach[37] and the DOS method [53], and it agrees with the qualitative features of the simple
models discussed above.

Finally, we summarise in Fig. 10 the overall results for the critical line of four flavor QCD
(note that Fig. 9 uses µB while Fig. 10 uses µ : the red lines is the same in the two plots).

8.1 Thermodynamics beyond µ/T ' 1

Similarly, it is possible to apply the Pade’ analysis to thermodynamics observables. The Pade’
approximants to the results for the chiral condensate in the hot phase are shown in Fig. 11, upper
diagram, from [42]. We see that the Pade’ approximants converge well beyond the would-be radius
of convergence of the Taylor expansion. Similar results have been obtained in two colour QCD
[43] where it is also possible a direct comparison with exact results, in the spirit of ref. [70].

We underscore that, as noted in [21] the radius of convergence should tend to infinite in the
infinite temperature limit, and indeed it has been estimated to be large by the Bielefeld–Swansea
collaboration[71] : by increasing T Pade’ and Taylor should become equivalent.
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9. The Hadronic Phase and the Fourier Analysis
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Figure 9: Pade’ approximants for the critical line of four
flavor QCD [42].

The grand canonical partition func-
tion of the Hadron Resonance Gas
model[73, 72] has a simple hyperbolic co-
sine behaviour. This can be framed in
our discussion of the phase diagram in the
temperature-imaginary chemical poten-
tial plane which suggests to use Fourier
analysis in this region, as observables
are periodic and continuous there[19].
For observables which are even (Oe) or
odd (Oo) under µ → −µ the analytic
continuation to real chemical potential of
the Fourier series read Oe[o](µI ,Nt) =

∑n a(n)
F cosh[sinh](nNt NcµI). In our Fourier

analysis of the chiral condensate [19] and
of the number density[21] - even and odd observables, respectively - we limited ourselves to
n = 0,1,2 and we assessed the validity of the fits via both the value of the χ 2/d.o.f. and the
stability of a(0)

F and a(1)
F given by one and two cosine [sine] fits: we found that one cosine [sine] fit

describes reasonably well the data up to T ' 0.985Tc (Fig. 12a); further terms in the expansion did
not modify much the value of the first coefficients and does not particularly improve the χ 2/d.o.f.:
the data are well approximated by the hadron resonance gas prediction ∆P ∝ (cosh(µB/T )−1) in
the broken phase up to T ' 0.985Tc. This behaviour has been confirmed by an improved analysis
in [40], Fig. 13. The analysis of the corrections requires better precision [74].
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Figure 10: The critical line of four flavor QCD : the red
line is the small chemical potential region amenable to a
Taylor expansion. Using it as an input to the Pade’ analy-
sis, the results have been extended deep into the low tem-
perature phase, in good agreement with other approaches

The analytic continuation (Fig. 12b)
of any observable O is valid within the
analyticity domain, i.e. till µ < µc(T ),
where µc(T ) has to be measured indepen-
dently. The value of the analytic contin-
uation of O at µc, O(µc), defines its criti-
cal value. When O is an order parameter
which is zero in the quark gluon plasma
phase, the calculation of O(µc) allows the
identification of the order of the phase
transition: first, when O(µc) 6= 0, second,
when O(µc) = 0 [19, 21].

10. The Hot Phase and the QGP

The behaviour of the number den-
sity (Fig. 14, from ref.[83]) approaches
the lattice Stefann-Boltzmann prediction,
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Figure 11: Analytic continuation via Pade’ approximants for the chiral condensate: three colour QCD (top
diagram) [42] and two colour QCD (bottom diagram) [43]. For real QCD convergence seems to be achieved
for Pade’[N,M], N +M ≥ 6. For two colour QCD Pade’[2,2] suffices.
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Figure 12: Hadronic Phase: (a) One Fourier coefficient fit to the particle number, showing that the Hadron
Resonance Model is adequate to describe this data. (b) Compilation of the results for the chiral condensate
and the particle number as a function of real chemical potential: the lines are cut in correspondence with µc,
showing the first order character of the phase transition (inferred from the chiral condensate) and the critical
density [83].
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Figure 13: ∆F(T,µI)
VT 4 as a function of µI

T for T
Tc

∼ 0.9. The results from an improved analysis at imaginary
chemical potential confirm that the data are well accounted for by one component Fourier fit [40].

with some residual deviation. The deviation from a free field behaviour can be parametrised as
[80, 82]

∆P(T,µ) = f (T,µ)PL
f ree(T,µ) (10.1)

where PL
f ree(T,µ) is the lattice free result for the pressure. For instance, in the discussion of Ref.

[82]
f (T,µ) = 2(1−2αs/π) (10.2)

and the crucial point was that αs is µ dependent.
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Effective Nf/4  T = 1.5 Tc
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Figure 14: T ≥ 1.5Tc: Ratio of the lattice results to the lat-
tice free field: the deviation from free field can be simply
described by an effective reduced number of flavor, from ref.
[83]

We can search for such a non triv-
ial prefactor f (T,µ) by taking the ratio
between the numerical data and the lat-
tice free field result nL

f ree(µI) at imagi-
nary chemical potential:

R(T,µI) =
n(T,µI)

nL
f ree(µI)

(10.3)

A non-trivial (i.e. not a constant)
R(T,µI) would indicate a non-trivial
f (T,µ). In Fig. 14 we plot R(T,µI)

versus µI/T : the results for T ≥ 1.5Tc

seem consistent with a free lattice gas,
with an fixed effective number of fla-
vors Ne f f = 0.92(0.89) × 4 for T =

3.5(1.5)Tc : in short, the deviation
from free field are probably trivial, and
certainly µ independent.
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11. The non–perturbative Quark Gluon Plasma, and the critical line of QCD in the
T,µI plane.

When temperature is not much larger than the critical temperature – say, Tc < T <' 2T c –
strong interactions among the constituents give rise to non–perturbative effects: in short, at large T
the QGP is a gas of nearly free quarks, which becomes strongly interacting at lower temperatures
T = (1−3)Tc, see e.g. [75, 76] for recent reviews and a complete set of references.

Several proposals have been made to characterise the properties of the system in such non per-
turbative phase. For instance the above mentioned strong interactions might be enough to preserve
bound states above Tc, while coloured states might appear, deeply affecting the thermodynamics of
the system [77]. High temperature expansions are being refined more and more , so to be able to
capture the features of dense systems down to Tc (see e.g [84, 85, 86]. Model theories of quasipar-
ticle physics have been considered as well[78].

Here we would like to frame the discussion of the strongly interacting QGP in the context
of the critical behaviour at imaginary µ [87]. Consider again the phase diagram in the T, µ 2

plane(Figure 1): we note that the candidate sQGP region right above Tc is limited by a chiral
transition at negative µ 2 : it is then all a critical region, whose features might well carry over to
real baryochemical potential.

11.1 Evidence for strong interactions in the plasma

In this final subsection I report on our attempt to confront these speculative idea with lattice
data[87].

First, consider the data against a simple free field behaviour: as done in Fig. 15, we take the
ratio between the numerical results and the free field results n(µI)/n(µI) f ree(Fig. 16,left) [41, 87]:
n(µI)/n(µI) f ree is far from being constant (as opposed to the findings at higher temperature, Fig.
14), which cannot be accounted for by any simple renormalisation of the degrees of freedom.

In ref. [40], Fig. 15, it was confirmed that the coefficients of a polynomial fit are not in a
simple relations with those of a lattice free field.
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Figure 15: ∆F(T,µI)
VT 4 as a function of µI

T for T
Tc

∼ 1.1. (left) The histogram method; (right) the reweighting

method [35], supplemented by the histogram results for 83 × 4. A simple modification of the free gas
expression describes all the data. As the volume increases, the data come close to the Stefan-Boltzmann
limit (T → ∞) even though T

Tc
∼ 1.1 only. Figure and caption are from [40]
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Figure 16: T = 1.1Tc n(µI)/n(µI) f ree as a function of µI , showing a very clear evidence of a deviation
from a free field behaviour(left diagram). Average Polyakov loop fitted to the form predicted by a simple
critical behaviour fc(µI) [41, 87]

Next, we checked our data against the form proposed in ref. [79], which was motivated by the
hadron resonance gas parametrisation. Going imaginary (and setting µ isospin = 0 ) the proposal of
ref. [79] yields:

P
T 4 = Aq(T )cos(µ/T ))+Bqq(T )cos(2µ/T )+Cqqq(3µ/T ) (11.1)

giving in turn:

n(iµ ,T ) = Aq(T )sin(µ/T )+2Bqq(T )sin(2µ/T )+3Cqqq(3µ/T ) (11.2)

We have performed different fits to the above form, none of them really satisfactory. More terms
improve of course the fit, but we do not get any close to the nice agreement with HRG observed
in the hadronic phase, and in particular it is difficult to capture the behaviour close to the RW
singularity.

We propose to use a power law fit derived from a singular behaviour of the free energy:

logZ ∝
1

(µc
I

2 −µ2
I )α

(11.3)

This in turn gives
Pol(µI) ∝ (µc

I
2 −µ2

I )(β ) (11.4)

. In Figure 16, right we show the results of the fit, which looks indeed satisfactory [87].
From the results above, we conclude that the data in the candidate region for a strongly coupled

QCD are very well accounted for by a conventional critical behaviour: clearly, a free field behaviour
would have been incompatible with it. In other words, the nonperturbative features of the plasma
are closely related with the occurrence of the critical line at negative µ 2!

We can then go back and analyse the behaviour of n(µ): the results for the Polyakov loop
validates the simple form for the free energy, which, in turn, gives for N(µI)

n(µI) ∝ µI(µc
I

2 −µ2
I )(α−1.) (11.5)
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and we checked that the behaviour of n(µ) is reasonably well reproduced by our fit.

In turn, it is now possible to analytically continue from imaginary to real chemical potential,
yielding:

n(µ) = K(µ(µ c
I

2 + µ2)(α−1.)) (11.6)

where α = 1.2.

It is then amusing to notice that by using the simple arguments from the theory of critical phe-
nomena we arrive at a modified Stefann-Boltzmann law, which would correspond to α = 2.(modulo
coefficients).

Obviously, this modified form accounts for a slower increase of the particle density closer to
T c than in the free case, as well as for the behaviour observed in fig.16, left.

From a more mathematical point of view, the proposed parametrisation is a Pade’ approximant
of order [2,1], as appropriate in the standard application to critical phenomena. The results thus
obtained can be analytically continued within the entire analyticity domain.

We underscore that our results do not rule out the HRG-type parametrisation proposed in ref.
[79], and, in turn, the occurrence of coloured states: the HRG form might still be valid, once a
dependence on the chemical potential of A(T ),B(T ),C(T ) is considered.

On the other hand, if this is the case, the simple interpretation of susceptibility ratios as probes
of degrees of freedom has to be revised.

12. Summary

It is possible to study QCD for imaginary values of the baryochemical potential, and infer
properties of the physical region. From a technical point of view, these simulations are no more
expensive than ordinary QCD, and, in particular, the infinite volume limit is well defined. On the
other hand, we should be aware that we are extrapolating results: one has to pay attention to the fact
that, by modifying the fitting function (whatever it might be) at imaginary chemical potential by a
non–leading term, the difference in physical quantities is still non leading. This can be complicated,
and often mathematical arguments need to be supplemented by some physical insight.

We have seen that by use of different techniques and lattice discretization we can gain a rea-
sonable control on the shape of the critical line of two, three, two plus one, and four flavor QCD,
as well as on thermodynamics observables in different phases. The results can be pushed beyond
the radius of convergence of the Taylor expansion, and the density of states method or canonical
approach, even if more preliminary, offer some guidance from the low temperature side.

A cross check with analytic models is particularly simple, a one can analytically continue them
from real to imaginary chemical potential. Results obtained in this way include a verification of
the validity of the hadron gas model, and the approach to a free gas. In the hot phase close to Tc

the critical line at imaginary chemical potential suggests an alternative interpretation of the non
perturbative features of the strongly interactive quark gluon plasma, which is consistent with the
numerical results.
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