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1. Introduction

The phase diagram of strongly interacting matter shows an astonishing richness (cf. [1, 2]
for some excellent overviews). At finite temperature T CP ∼ O(160MeV) and non-zero baryo-
chemical potential µCP

B ∼ O(360MeV) [3, 4] a first-order phase transition line (for µB > µCP
B )

separating confined from deconfined matter terminates. While the exact location (T CP,µCP
B ) of

this end point, the critical point (CP) being of second order, is matter of current investigations (see
comparison in [5], showing in fact a strong quark mass mq dependence [6, 7]), its existence for
finite quark masses seems to be guaranteed by general arguments [5, 8] relying on universality
arguments. Note, however, the recent discussion [9, 10], where an alternative scenario without CP
is discussed. We take here the attitude to assume, in line with [5], the existence of a CP and discuss
phenomenologically some of its possible implications. Besides, the extension of the critical region,
which might be crucial for searches of CP in future heavy-ion experiments, is fairly unknown
[11, 12]. For massive quarks, the CP belongs to the universality class of the 3-dimensional Ising
model which was numerically verified by first-principle QCD simulations (dubbed lattice QCD) for
the volume dependence of the Binder cumulant [6, 13]. In the (unphysical) limit of vanishing quark
masses, the CP turns into a tricritical point belonging to the universality class of the Heisenberg
O(4) model in three dimensions [14] while the transition line continues as second-order phase
transition line of critical points up to µB = 0.

For finite mq and µB < µCP
B , the sequence of first-order phase transitions turns into a cross over.

Still, in this region a rapid increase of the entropy density s or energy density e in a narrow temper-
ature interval or a peak in a suitable susceptibility allows for the determination of a pseudo-critical
line defining the deconfinement temperature Tc at µB = 0. At Tc, the chiral condensate < q̄q > as
order parameter of chiral symmetry breaking and the expectation value of the Polyakov-loop as
order parameter of deconfinement also rapidly change. For realistic quark masses reproducing the
physical hadron spectrum, the transition of confined (hadron) matter to deconfined (quark-gluon)
matter seems to be indeed a cross over [3, 15]. This is in contrast to pure gauge theory, which
displays at Tc a first-order phase transition [2, 16]. The quark mass dependence of the transition
characteristics at Tc is discussed in some detail in [2, 15].

The CP as fundamental issue of QCD is matter of current investigations both theoretically
and experimentally. In particular, observable consequences are discussed [5, 17]. Concerning the
hydrodynamical description of the expansion stage in heavy-ion collisions, one might ask to what
extent the equation of state (EoS) becomes modified by CP.

Our paper is organized as follows. In section 2, we briefly review our quasi-particle model for
the EoS of strongly interacting matter and compare with recent lattice QCD simulations for two
quark flavors, in particular the isentropic evolutionary paths during the hydrodynamical expansion
in heavy-ion collisions. In section 3, we discuss the influence of including critical point effects
phenomenologically into our model on the EoS. Our results are summarized in section 4.

2. Quasi-Particle Model and EoS for Nf = 2

The pressure p of N f = 2 light quark flavors in our quasi-particle model (QPM) as function of
temperature T and one chemical potential µq = µB/3 reads p(T,µq) = ∑a=q,g pa −B(Πq,g(T,µq))
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(cf. [18] for details) with partial pressures of quarks, pq, and transverse gluons, pg, predominantly
propagating on-shell with dispersion relation ωa =

√

k2 +Πa. This quasi-particle picture is mo-
tivated by a chain of feasible approximations starting from the Luttinger-Ward approach to QCD
(cf. [19, 20] for details). Πa are given by the asymptotic expressions of the gauge-independent
hard-thermal loop / hard-dense loop self-energies [21] and B is determined by thermodynamic self-
consistency and stationarity of the thermodynamic potential under functional variation with respect
to the self-energies, δ p/δΠa = 0 [22]. Non-perturbative effects are accommodated in the model by
replacing the running coupling g2 in Πa by an effective coupling G2 which needs to be determined
for arbitrary T and µq. This can be achieved by solving a flow equation following from Maxwell’s
relation [18, 20] as Cauchy-problem together with a convenient parametrization of G2 at µq = 0
[23].

From the pressure p, other thermodynamic quantities such as entropy density s or baryon
density nB follow straightforwardly. Assuming local entropy and baryon number conservation
during the hydrodynamical expansion in heavy-ion collisions, the evolutionary paths of individual
fluid elements are represented by isentropic trajectories s/n B = const in the T - µB plane. Recently
nB, s or energy density e have been evaluated in first-principle numerical simulations of QCD
[24, 25] as Taylor series expansions

s(T,µB) = T 3
∞

∑
n=0

sn(T )
( µB

3T

)n
, (2.1)

e(T,µB) = T 4
∞

∑
n=0

en(T )
( µB

3T

)n
, (2.2)

including terms up to order (µB/T )6 (terms of order (µB/T )8 are currently calculated). Here,
en(T ) = 3cn(T )+ c′n(T ) and sn(T ) = (4−n)cn(T )+ c′n(T ) where c′n(T ) = Tdcn(T )/dT and

cn(T ) =
1
n!

∂ n(p/T 4)

∂ (µq/T )n

∣

∣

∣

∣

µq=0

(2.3)

are the expansion coefficients for the pressure p [24] which can be derived from the QPM ex-
pression for p via (2.3). Using these expansions up to order (µB/T )6, we calculate the isentropic
trajectories for s/nB = 300, 45 and compare with lattice QCD results [25] in Fig. 1. The agreement
is fairly good (cf. [26] for a discussion of these results). In [23], we reported an impressive agree-
ment between QPM and lattice QCD results for cn(T ). As the Taylor expansion coefficients of s
and e contain both, cn and c′n, they serve for a more sensitive test of our model. We compare the
QPM results for s2,4 and e2,4 with lattice QCD results [25] in Fig. 2 finding a fairly good agreement.

It should be emphasized that the QPM does not include any critical behavior. However, the
adjustment to lattice QCD data for p(T,µq = 0) [27] forces us to build in a change of the slope of
the effective coupling G2(T,µq = 0): Above Tc, the coupling resembles a regularized perturbative
logarithmic behavior, while below Tc a linear dependence on T is required to describe the data.
This change of the slope of G2(T,µq = 0) at Tc generates the structures seen in Fig. 2, as higher
order derivatives of G2 enter. With the above reasoning we now attempt to supplement our QPM
by structures causing a critical behavior.
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Figure 1: Isentropic trajectories: Comparison of N f = 2 lattice QCD results [25] for s/nB = 300 (triangles)
and 45 (circles) with the corresponding QPM results. In both cases, a truncated Taylor series expansion up
to order (µB/T )6 for s and nB is applied. The deconfinement temperature at µB = 0 is set to Tc = 175 MeV
[25].
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Figure 2: Comparison of our QPM with lattice QCD results [25] for en(T ) (squares) and sn(T ) (circles) as
function of T/Tc for N f = 2; left (right) panel for n = 2(4). QPM parameters chosen according to [23, 26].
The pronounced structures in the vicinity of T = Tc follow from a curvature change in the parametrization
of G2(T,µq = 0) (cf. [23]).

3. Including the Critical Point

Following [28], we aim at incorporating phenomenologically CP features into the EoS
parametrization and choose as starting point the decomposition of the entropy density s into a
regular part sreg and a singular part ssing which is related to phase transitions and critical phenom-
ena [29]. For sreg we use our QPM entropy density, and ssing is constructed from the parametric
representation [28, 30] of the Gibbs’ free energy density G(r,h) with critical behavior belonging to
the universality class of the 3-dimensional Ising model. The order parameter of the 3-dimensional
Ising model is the magnetization M(r,h). G(r,h) and M(r,h) are functions of reduced temperature
r = (T −Tc)/Tc and external magnetic field h. From [28, 30], the parametric form of G in terms of
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new parameters R and θ reads
G = h0M0R2−αg(θ)−Mh (3.1)

with M = M0Rβ θ and M0, h0 are normalization constants. The variables of the 3-dimensional Ising
model are defined by

r = R
(

1−θ 2) , (3.2)

h = h0Rβδ
2

∑
i=0

a2i+1θ 2i+1 , (3.3)

where R≥ 0, |θ | ≥ 1.154, the critical exponents for the 3-dimensional Ising model read β = 0.325,
δ = 4.80, α = 2−β (1+δ ) and a1 = 1, a3 =−0.76201, a5 = 0.00804. The function g(θ) follows
from solving the differential equation

2

∑
i=0

a2i+1θ 2i+1 (

1−θ 2 +2βθ 2) = 2(2−α)θg(θ)+(1−θ 2)g′(θ) (3.4)

with integration constant g(θ = 1) = 0.04242. Following these definitions, M(r,h) shows the cor-
rect critical behavior M(r = 0,h) ∼ sgn(h)|h|1/δ , M(r < 0,h = 0+) ∼ |r|β close to r = 0, h = 0
when choosing M0, h0 appropriately. In Fig. 3, we illustrate the mapping of the variables of the

0 1 2 3 4
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h

Figure 3: Mapping (r,h) ↔ (R,θ ) of the parametric representation of G in [28, 30] according to (3.2, 3.3).
Left panel: solid curves denote lines of constant h = 0.5 (−0.5) for the upper (lower) curve. Dashed curves
depict lines of constant r > 0 (r = 0.5,1,2 from left to right), whereas dotted lines represent constant negative
r = −0.5. Right panel: solid curves denote lines of constant R = 0.5,1,2,3 from inner to outer ring, dashed
curves lines of constant θ . For h < 0, θ is negative (θ = −1.1,−1 (here r = 0) and −0.5 from left to right);
for h > 0, θ is positive (θ = 1.1,1 (here r = 0) and 0.5 from left to right). For h = 0, θ = ±1.154 for r < 0
and θ = 0 for r > 0. By construction, the parametrization is continuous for r > 0, whereas the discontinuity
of the parametrization in the region of r < 0 generates a first-order phase transition for µB > µCP

B when
choosing the coordinate system (r,h) in the T - µB plane appropriately, cf. Fig. 4.

3-dimensional Ising model (r,h) on the parametric representation (R,θ ) of the Gibbs’ free energy
density G constructed in [28, 30].

CP is located at r = 0 and h = 0, cf. Fig. 4, and the coordinate system is orientated such
that by construction the region of positive r denotes the cross over region, whereas the region

5
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Figure 4: Visualization of the coordinate transformation between (T,µB) and (r,h). CP is located according
to [3] on the estimated phase boundary Tc(µB). The coordinate system (r,h) is located such that r = 0, h = 0
at CP. The r-axis is defined to be tangential to Tc(µB) at CP such that r > 0 denotes the cross over region,
r < 0 the region of first-order phase transitions. We put the h-axis perpendicular to the r-axis. Note, that
with increasing µB, r-axis and phase boundary increasingly deviate from each other.

of r < 0 defines the region of first-order phase transitions. The phase boundary is estimated by
Tc(µB) = Tc

(

1+ 1
2 d( µB

3Tc
)2

)

with d = −0.122 according to [6, 31] which agrees also fairly well
with the curvature when solving for the flow equation of our QPM emanating at T c = 175 MeV.

The singular part of the entropy density near the QCD critical point can be constructed from
the dimensionless quantity

Sc(T,µB) = −
√

∆T 2
c +∆µ2

B,c

(

∂G
∂T

)

µB

. (3.5)

Here, ∆Tc and ∆µB,c approximate the extension of the critical region in T and µB directions, re-
spectively, provided the CP is located at small µB, by quantifying the rapidity with which Sc(T,µB)

changes across the r-axis that mimics the phase transition line. From Fig. 4 it also becomes clear
that this phenomenological construction of CP features into the model is limited in accuracy by
the increasing discrepancy between the r-axis and the actual phase boundary between hadronic and
quark-gluon matter as µB increases. Thus, this procedure works best if CP is located in the flat
region of the phase border line at small µB. The difficult task is to map the QCD variables T and
µB on r and h and to evaluate (3.5) from (3.1). These relations were elaborated in the pioneering
work [28] the interested reader is referred to for the explicit form.

In order to illustrate CP effects on the EoS, in particular on the pattern of isentropic trajec-
tories, we consider here N f = 2 and the CP located according to [3] at µCP

B = 360 MeV. Since
we use Tc(µB = 0) = 175 MeV ([25], see also [32]) we find by solving the flow equation [33] a
slightly different T CP = 170 MeV (compared to [3]). For the regular contribution sreg we employ
(2.1) including s0,2,4,6(T ) as calculated from our QPM with parameters as applied in [23, 26] for
describing ci(T ) (cf. Fig. 2 for s2,4(T )). When constructing ssing from the dimensionless quantity
Sc(T,µB) in (3.5), one important constraint to be satisfied is a vanishing net baryon density nB at

6
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µB = 0. From standard thermodynamic relations one finds

nB(T,µB)−nB(0,µB) =

∫ T

0

∂ s(T ′,µB)

∂ µB
dT ′. (3.6)

Assuming a finite extension of the critical region around CP, the integration constant nB(0,µB) is
completely determined by the regular part of the thermodynamic potential. Obeying the correct
dimension of an entropy density, we therefore choose ssing proportional to the second-order Taylor
expansion coefficient c2(T ) from (2.3) (cf. [23]),

ssing(T,µB) =
2
9

Ac2(T )µ2
BTtanhSc(T,µB). (3.7)

Here, A denotes the relative strength between regular and singular contributions and tanhSc binds
Sc(T,µB) between −1 and +1 for convenience.

In order to describe lattice QCD results, one has to adjust the remaining parameters ∆Tc, ∆µB,c

and A according to slQCD = sreg + ssing, where for small µB lattice QCD results have already been
successfully described by the regular part alone. A possible solution is choosing the parameters in
(3.5, 3.7) as ∆Tc = ∆µB,c = 2 MeV mimicking a small critical region and A = 0.1. This solution
implies that bulk thermodynamic quantities like p(T,µB), e(T,µB) or s(T,µB) are represented to a
large extent by the regular contribution, i. e. by the QPM parametrization, as evident in Fig. 5 (left
panel) for the isentropic trajectories [33]. Only for larger µB in the vicinity of the CP, the isentropic
trajectories are slightly modified, however, leaving the general pattern unchanged.

Increasing A or ∆Tc and ∆µB,c and therefore the strength of the singular contribution or the ex-
tension of the critical region, respectively, would change the isentropic trajectories also for smaller
µB. For instance, in [33] a simple toy model including schematically CP effects was discussed
where for larger A > 0 trajectories were bent into the opposite direction towards larger µB due to
the presence of CP showing clear signatures of an attractor. Furthermore, trajectories on the right
of CP exhibited the typical first-order behavior, cf. Fig. 5 (right panel). Note that in [28] a model
was constructed involving a hadronic low-temperature and a partonic high-temperature phase in
which CP effects also change the pattern of the trajectories. These results significantly depend on
the entropy density, in particular in the hadronic phase, but also on the strength parameter A and
the extension of the critical region. However, lattice QCD results [25] seem to exclude such strong
effects of CP.

The small effect observed for small µB in Fig. 5 is understood by the numerical smallness
of ssing (cf. Fig. 6 left panel) and its µB-dependence in comparison with sreg (cf. entropy density
s(T,µq = 0) in Figure 1 of [20]). At larger values of µB, the influence of CP increases, but with
our focus on the small-µB region we conclude that CP effects may be small for small net baryon
densities, in particular on averaged hydrodynamics. Quark-meson model based studies combined
with the proper-time renormalization group method [11] also point to CP effects concentrated on a
fairly narrow region.

In contrast, for µB close to CP, baryon number susceptibility χB = (∂nB/∂ µB)T or specific
heat cH = T (∂ s/∂T )µB are strongly influenced by the QCD critical point. At CP and across the
first-order phase transition line, cH diverges due to its singular part (cf. Fig. 6 right panel). In order
to illustrate the effects on χB, we increase A = 1 which does not alter the qualitative behavior of

7
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Figure 5: Influence of CP on the pattern of isentropic trajectories. Left panel: s/nB = 300, 45, 35 (from left
to right) for the QPM without CP (solid curves, cf. Fig. 1) and with CP (dashed curves). For small µB the
influence of CP on the EoS is negligible. CP is located according to [3] on the estimated phase border line
(dotted curve). Note that in our approach sreg and therefore ssing are based on a Taylor series expansion which
is limited by its radius of convergence, µB/T ≤ 1.8 [31]. It is therefore impractical to examine trajectories on
the right of CP within this ansatz. In contrast, the full QPM is not hampered by these shortcomings [23] and
it would, therefore, be conceivable to apply the full entropy density s = ∂ p/∂T from the QPM expression for
p as regular part, defining ssing = AsregtanhSc. These considerations will be reported elsewhere. Here, we
employ a toy model for illustration purposes in the right panel: Influence of CP on the isentropic trajectories
s/nB = 50, 28 (from left to right) in a toy model. Here, sreg = 4 c̄0T 3 + 2

9 c̄2µ2
BT , ssing = 2

9 c̄2µ2
BTAtanhSc

with c̄0 = (32+21N f )π2/180, c̄2 = N f /2 and N f = 2 where A = 0,0.5,1 for dashed, thin and solid curves,
respectively. For details cf. [33]. Dotted curve represents the r-axis. The isentropic trajectories display the
typical pattern when crossing a first-order border line [34] signalling a finite latent heat.

the observables. In Fig. 7 (left panel), we exhibit the baryon number density nB as a function of µB

which shows the expected continuous behavior in the crossover regime and also for T > Tc. At CP,
however, the slope tremendously increases becoming infinite which turns into a finite discontinuity
across the first-order phase transition line. Accordingly, its derivative χB as measure for fluctuations
in nB diverges at CP and across the phase transition line whereas χB remains finite for temperatures
T > TCP (cf. Fig. 7 right panel). Also, a suppression of baryon number fluctuations in the confined
phase (solid, dashed and dash-dotted curves in Fig. 7 right panel) are evident in the vicinity of
CP, whereas this is not the case in the deconfined phase (dotted curve). In contrast, the isovector
susceptibility χI is expected to remain finite when approaching CP [24]. Here, we examined the
behavior of χB for constant temperatures. In [35] it was argued that a verified signal of CP would
require a non-monotonic behavior of χB along the phase boundary Tc(µB).

Other possibilities of including CP in singular contributions of thermodynamic bulk quantities
are conceivable, e. g. ssing in (3.7) could be chosen proportional to µ 3

B rather than µ2
BT . Also, the

inclusion of CP effects into different toy models were reported in [33]. Different phenomenological
approaches of constructing an EoS with CP behavior can be found in [36, 37]. However, a unique
adjustment to lattice QCD data without better information or guidance seems not to be accessible.
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Figure 6: Left panel: scaled singular part of the entropy density ssing/T 3 (3.7) as a function of T/Tc for
different µB = 210, 360, 450 MeV (solid, dashed and dash-dotted curves, respectively). For small µB, ssing

is negligible compared to sreg (cf. entropy density s(T,µq = 0) in Figure 1 of [20]). At CP the slope of
ssing becomes infinite resulting in a diverging specific heat cH = T ∂ s

∂ T . For µB > 360 MeV, ssing shows the
significant discontinuity across the phase transition line of first-order. Right panel: corresponding singular
part of the specific heat cH (same line code).

4. Conclusions

In summary we present here a phenomenologically guided construction to supplement a simple
quasi-particle model by elements displaying the static criticality of the 3-dimensional Ising model,
i. e. the universality class QCD belongs to. In doing so, we apply a procedure well probed in solid
state and condensed matter physics, but which is restricted to a narrow region around the critical
point, provided its existence. Having adjusted the pure quasi-particle model to available lattice
QCD results, little space is left for pronounced effects related to the critical point. Of course, an
divergence of susceptibilities at the critical point and the first-order phase transition beyond it (at
larger chemical potentials) are found, but the modification of the equation of state remains rather
modest, as evident in the isentropic curves in the T - µB plane. It turns out that various ansätze
are conceivable and that thermodynamic consistency restricts the parameter space. The latter fact
leaves us with the impression that a readjustment of the quasi-particle model parameters, such that
even for sizeable critical point effects the lattice QCD results are recovered, is hardly possible.

One major prospect of observable consequences of the critical point is the occurrence of in-
creased fluctuations. An adequate theoretical study has to rely on a more microscopical frame-
work than offered by using the equation of state in standard hydrodynamics, say along the lines in
[36, 38]. Nevertheless, the presented model may be used in further studies, e. g. considering hydro-
dynamical expansion along neighboring paths crossing or not the first-order phase transition region
or the critical point itself and analyzing sensible flow characteristics like elliptic flow and higher
moments thereof. Another issue may be the study of critical point effects on penetrating probes,
like photons and dileptons [39], i. e. the electromagnetic emissivity of hot and dense strongly
interacting matter.

9
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Figure 7: Left panel: baryon number density nB as a function of µB for different temperatures T =

TCP − 1.25 MeV, TCP, TCP + 1.25 MeV and T = 176 MeV (dashed, solid, dash-dotted and dotted curves,
respectively). For T > TCP, nB(µB) is continuously increasing, however showing an increasing influence of
CP’s presence by a tiny depression when approaching T CP; at T = TCP, the slope becomes infinite at µCP+

B ,
and for T < TCP, nB(µB) exhibits the discontinuous behavior of a first-order phase transition when crossing
the phase boundary. Right panel: corresponding baryon number susceptibility χB = ∂ nB

∂ µB
as function of µB

(same line code). The divergence of χB(µCP
B ) is clearly seen, while the spike for T = T CP − 1.25 MeV at

µB = 0.41 GeV is an artifact of the numerical differentiation at the density discontinuity. Note that due
to the singular contribution we are restricted in our choice of parameters in (3.5, 3.7) in order to maintain
thermodynamic self-consistency. The parameters here are chosen such that this possibility becomes visible
in the region near µCP−

B , where χB(µB) drops as a consequence of the depression in nB(µB). In principle, for
an unfortunate parameter choice, the slope of nB(µB) in the vicinity of CP can become negative resulting in
a negative χB.
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