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1. Introduction

Over the past decade a striking regularity has been established in heavy ion collisions: from
SIS to RHIC, particle yields are consistent with the assumption of chemical equilibrium [1]. Fur-
thermore, the chemical freeze-out temperature,T, and the baryon chemical potentialµB follow a
strikingly regular pattern as the beam energy increases. This has led to several proposals describing
the freeze-out curve inT−µB plane. The conditions of fixed energy per particle [2, 3], baryon+anti-
baryon density [4], normalized entropy density [5, 6] as well as percolation model [7] all lead to
reasonable descriptions of the freeze-out curve in theT−µB plane. The results have been compared
with the most recent [8, 9, 10] chemical freeze-out parameters obtained in the thermal-statistical
analysis of particle yields in [11] where the sensitivity and dependence of the results on parameters
is analyzed and discussed. It has been shown in [11] that, within present accuracies, all chemical
freeze-out criteria give a fairly good description of the particle yields, however, the low energy
heavy-ion data favor the constant energy per hadron as a condition for chemical freeze-out. This
condition also shows the weakest sensitivity on model assumptions and parameters. This criterion
was first identified [2, 3] by comparing the thermal parameters at SIS energy with those obtained
at SPS. It was shown that the average energy per particle at SIS energy reaches approximately the
same value of 1 GeV as calculated at the critical temperatureexpected for deconfinement atµB = 0.
In addition, known results for chemical freeze-out parameters at the AGS also reproduced the same
value of energy per particle. Thus, it was suggested that thecondition of a fixed energy per hadron
is the chemical freeze-out criterion in heavy-ion collisions. A comparison with the extracted results
on T andµB is shown in Fig. [1]. The best estimate gives a value〈E〉/〈N〉 ≈ 1.08 GeV.

In addition to the fixed〈E〉/〈N〉 criterion, alternative proposals have been made to describe
chemical freeze-out in heavy-ion collisions at all energies:

• a fixed value for the sum of baryon and anti-baryon densities,nB + nB̄, of approximately
0.12/fm3 [4];

• a self-consistent equation for the densities based on geometric estimates using percolation
theory [7];

n(T,µ) =
1.24
Vh

[

1− nB(T,µ)

n(T,µ)

]

+
0.34
Vh

[

nB(T,µ)

n(T,µ)

]

. (1.1)

• a fixed value of the entropy density,s/T3, of approximately 7 [5, 6].

A comparison of these proposals is given in Fig.[2]. which shows that all proposals give a reason-
able description in the region between AGS and RHIC energies. Deviations appear at the highest
RHIC energy and at beam energies between AGS and SIS. It wouldtherefore be very interesting to
have good data in this energy region.

Independently of any particular criterium or model for the freeze-out condition, a numerical
parametrization, shown in Fig. [3], is given by.

T = 0.166−0.139µ2
B −0.053µ4

B. (1.2)
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Figure 1: Values ofT andµB deduced from particle multiplicities in heavy ion collisions for a wide range
of beam energies.
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Figure 2: Comparison of various freeze-out criteria with the values of T and µB obtained from particle
multiplicities in heavy ion collisions.
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Figure 3: A parametrization of the freeze-out curve deduced from particle multiplicities in heavy ion colli-
sions.

2. Energy Dependence of µB and T.

The values obtained forµB as a function of beam energy are displayed in Fig. [4]. As thisshows a
smooth variation with energy, it can be parametrized as

µB(
√

s) =
1.308 GeV

1+0.273 GeV−1√s
. (2.1)

This leads to the expectation thatµB ≈ 1 MeV at LHC energies.

Similarly, the freeze-out temperature is shown in Fig. [5].

A straightforward extrapolation leads to a value at LHC energiesT ≈ 166 MeV [12]. The energy
dependence of the thermal parameters makes it possible to calculate the maximum baryon density at
chemical freeze-out [13]. The hadronic freeze-out line in theρB− ε phase plane as obtained in the
statistical model with the values ofµB andT that have been extracted. The curves on the right have
been calculated forµQ = µS = 0 using either quantal (solid) or classical (dashed) statistics, while
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Figure 4: Variation of the baryon chemical potential as a function of energy.
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Figure 5: Variation of the baryon chemical potential as a function of energy.
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Figure 6: Chemical freeze-out line showing the maximum baryon density.

the curve on the left employs values ofµQ andµS that have been adjusted to ensure〈S〉 = 0 and
〈Q〉 = 0.4〈B〉 for each value ofµB. Also indicated are the beam energies (in GeV/A) for which the
particular freeze-out conditions are expected at either RHIC (total energy in each beam), starting
at 100+100 and going down to 2+2, or FAIR (kinetic energy of the beam for a stationary target),
starting at 5 and going up to 40. as based on fits to existing data. The triangular area corresponds to
energy densities below the minimum required at the given netbaryon density,ε = mNρB (ignoring
binding and compression), and is thus inaccessible.

3. Conclusions

There is by now a long history of measurements of particle abundances in heavy ion collisions
covering a wide range of beam energies. The case for chemicalequilibrium has become stronger
over the years with every new analysis confirming and reinforcing conclusions reached previously.
To distinguish between the various proposals which have been made in the literature, the lower
energy range at the AGS acquires a special significance as it will make it possible to discriminate
between them.
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